1 |
LIAN W, BAI Z. A class of fourth order nonlinear boundary value problem with singular perturbation. Applied Mathematics Letters, 2021, 115, 106965.
|
2 |
CARDIN P T, TEIXEIRA M A. Geometric singular perturbation theory for systems with symmetry. Journal of Dynamics and Differential Equations, 2020, 34, 775- 787.
doi: 10.1007/s10884-020-09855-2
|
3 |
TURUNA D A, WOLDAREGAY M M, DURESSA G F. Uniformly convergent numerical method for singularly perturbed convection-diffusion problems. Kyungpook Mathematical Journal, 2020, 60 (3): 629- 645.
doi: 0.1002/fld.4854
|
4 |
林苏榕, 田根宝, 林宗池. 含两参数的三阶拟线性常微分方程边值问题的奇摄动. 应用数学和力学, 2001, 22 (2): 199- 205.
|
5 |
徐建中, 莫嘉琪. 分数阶双参数高阶非线性扰动模型的渐近解. 应用数学和力学, 2020, 41 (6): 679- 686.
|
6 |
倪明康, 潘亚飞, 吴潇. 右端不连续奇异摄动问题的空间对照结构. 上海大学学报(自然科学版), 2020, 26 (6): 853- 883.
|
7 |
HOWES F A. Singularly perturbed nonlinear boundary value problems with turning points. SIAM Journal on Mathematical Analysis, 1975, (6): 644- 660.
|
8 |
O’MALLEY R E. Introduction to Singular Perturbations [M]. New York: Academic Press, 1974.
|
9 |
张祥. 具有转向点非线性向量问题的奇摄动. 应用数学, 1991, 4 (3): 56- 62.
|
10 |
WANG N. Simple singular perturbation problems with turning points. Journal of Applied Mathematics and Physics, 2019, 7 (12): 2979- 2989.
|
11 |
KUMAR D. A collocation method for singularly perturbed differential-difference turning point problems exhibiting boundary/interior layers. Journal of Difference Equations and Applications, 2018, 24 (12): 1847- 1870.
|
12 |
SHEN J H, HSU C H, YANG T H. Fast-slow dynamics for intraguild predation models with evolutionary effects. Journal of Dynamics and Differential Equations, 2020, 32, 895- 920.
|
13 |
BUTUZOV V F, NEFEDOV N N, SCHNEIDER K R. Singularly perturbed problems in case of exchange of stabilities. Journal of Mathematical Sciences, 2004, 121 (1): 1973- 2079.
|
14 |
YADAV S, RAI P. A higher order numerical scheme for singularly perturbed parabolic turning point problems exhibiting twin boundary layers. Applied Mathematics and Computation, 2020, 376, 125095.
|
15 |
SHEN J, HAN M. Canard solution and its asymptotic approximation in a second-order nonlinear singularly perturbed boundary value problem with a turning point. Communications in Nonlinear Science & Numerical Simulation, 2014, 19 (8): 2632- 2643.
|