华东师范大学学报(自然科学版) ›› 2023, Vol. 2023 ›› Issue (3): 118-131.doi: 10.3969/j.issn.1000-5641.2023.03.012
• 河口海岸学 • 上一篇
收稿日期:
2021-07-26
接受日期:
2021-11-25
出版日期:
2023-05-25
发布日期:
2023-05-25
通讯作者:
董宏坡
E-mail:hpdong@sklec.ecnu.edu.cn
基金资助:
Guohao CHEN, Tieqiang MAO, Hongpo DONG*(), Yafei OU, Jiawei ZHANG
Received:
2021-07-26
Accepted:
2021-11-25
Online:
2023-05-25
Published:
2023-05-25
Contact:
Hongpo DONG
E-mail:hpdong@sklec.ecnu.edu.cn
摘要:
为了揭示硝化螺菌(Nitrospira)在潮滩湿地中的代谢潜力和环境适应机制, 本研究使用宏基因组学拼接与组装的方法, 从中国沿岸的5个潮滩湿地构建了14个较高质量的Nitrospira基因组. 系统发育分析结果表明, 在这些基因组中, 3个属于全程氨氧化细菌(complete ammonia oxidizer, Comammox); 9个为硝化螺菌世系Ⅱ和Ⅳ; 2个属于至今未见报道的世系Ⅲ型. 这表明, 潮滩湿地富含多样化的硝化螺菌类群. 代谢分析表明, 潮滩湿地Comammox和典型的Nitrospira含有氰酸酶、脲酶以及参与腈类、酰胺类化合物分解的酶, 暗示着它们能够与氨氧化微生物耦合利用有机氮作为能源. 此外, Nitrospira有着多重压力抵抗、病毒防御和渗透压调控策略. 这些结果深化了对Nitrospira 在潮滩湿地的多样性、生态功能潜力和环境适应机制上的认识.
中图分类号:
陈国浩, 毛铁墙, 董宏坡, 欧亚飞, 张家伟. 潮滩湿地硝化螺菌的代谢潜力和环境适应机制[J]. 华东师范大学学报(自然科学版), 2023, 2023(3): 118-131.
Guohao CHEN, Tieqiang MAO, Hongpo DONG, Yafei OU, Jiawei ZHANG. Metabolic potential and environmental adaptation mechanisms of Nitrospira in tidal flat wetlands[J]. Journal of East China Normal University(Natural Science), 2023, 2023(3): 118-131.
表1
样品的物理和化学性质"
样品 | 站位 | 位置 | 深度/cm | 盐度/‰ | 温度/℃ | pH 值 | 采样时间 | 来源 |
CM01s | CM01 | 31°30′N, 121°58′E | 15~20 | 0.9 | 9.3 | 8.16 | 2018年11月 | 崇明东滩湿地 (上海市) |
CM01m | CM01 | 31°30′N, 121°58′E | 55~60 | 1.0 | 9.3 | 8.10 | 2018年11月 | 崇明东滩湿地 (上海市) |
CM01b | CM01 | 31°30′N, 121°58′E | 95~100 | 1.1 | 9.3 | 8.22 | 2018年11月 | 崇明东滩湿地 (上海市) |
CM02s | CM02 | 31°30′N, 121°58′E | 15~20 | 1.2 | 9.2 | 7.99 | 2018年11月 | 崇明东滩湿地 (上海市) |
CM02m | CM02 | 31°30′N, 121°58′E | 55~60 | 0.9 | 9.2 | 8.36 | 2018年11月 | 崇明东滩湿地 (上海市) |
CM02b | CM02 | 31°30′N, 121°58′E | 95~100 | 0.9 | 9.2 | 8.37 | 2018年11月 | 崇明东滩湿地 (上海市) |
QMs | QM | 18°13′N, 109°37′E | 0~5 | 9.0 | 23.5 | 7.17 | 2020年11月 | 青梅港红树林自然保护区 (海南省, 三亚) |
QMm | QM | 18°13′N, 109°37′E | 10~15 | 11.0 | 23.5 | 7.43 | 2020年11月 | 青梅港红树林自然保护区 (海南省, 三亚) |
QMb | QM | 18°13′N, 109°37′E | 25-30 | 12.0 | 23.5 | 7.54 | 2020年11月 | 青梅港红树林自然保护区 (海南省, 三亚) |
LH01 | LH01 | 40°47′N, 121°56′E | 0~5 | 27.0 | 14.3 | 8.15 | 2019年03月 | 辽河口盐沼湿地 (辽宁省) |
LH02 | LH02 | 40°51′N, 121°56′E | 0~5 | 26.0 | 12.0 | 7.93 | 2019年03月 | 辽河口盐沼湿地 (辽宁省) |
ZN01 | ZN01 | 24°20′N, 117°45′E | 2015年09月 | 紫泥红树林自然保护区 (福建省, 龙海) [ | ||||
ZN02 | ZN02 | 24°20′N, 117°45′E | 2015年09月 | 紫泥红树林自然保护区 (福建省, 龙海) [ | ||||
YD | YD | 37°49′N, 119°07′E | 2017年12月 | 黄河三角洲湿地 (山东省) |
表2
从潮滩湿地宏基因组组装中提取的14个硝化螺旋菌的基因组特征"
基因组名称 | 序列数 | 基因组大小/Mb | GC含量/% | 编码基因数 | 完整度/% | 污染度/% |
QMm6 | 86 | 3.34 | 64.94 | 3169 | 93.18 | 2.27 |
QMm125 | 437 | 3.29 | 51.51 | 3459 | 93.53 | 0 |
QMm174 | 409 | 3.16 | 49.78 | 3228 | 76.53 | 0.91 |
QMb135 | 78 | 3.30 | 64.94 | 3087 | 96.82 | 2.27 |
QMb347 | 295 | 4.20 | 50.36 | 4065 | 95.85 | 0.30 |
ZN01_bin277 | 601 | 3.64 | 55.70 | 3993 | 95.40 | 2.16 |
ZN02_bin95 | 568 | 3.66 | 55.78 | 4023 | 97.37 | 4.99 |
ZN02_bin129 | 407 | 3.49 | 49.77 | 3557 | 92.85 | 2.12 |
CM01m262 | 247 | 4.30 | 55.30 | 4495 | 77.04 | 0.91 |
CM01s42 | 677 | 3.05 | 55.63 | 3529 | 71.65 | 0.81 |
CM02s178 | 624 | 3.69 | 56.05 | 4084 | 80.30 | 1.75 |
CM02m401 | 591 | 3.47 | 55.53 | 3875 | 86.30 | 0.91 |
YD_bin17 | 653 | 2.16 | 57.60 | 2620 | 72.60 | 0.36 |
LH01_bin68 | 697 | 3.33 | 47.95 | 3659 | 81.20 | 2.73 |
1 | BEHRENFELD M J, O’MALLEY R, SIEGEL D, et al. Nitrifiers: More than 100 years form isolation to genome sequences. Microbe Magazine, 2006, 1 (5): 229- 234. |
2 | KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16 (5): 263- 276. |
3 | KÖNNEKE M, BERNHARD A, DE LA TORRE J, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 2005, 437 (7058): 543- 546. |
4 | SOLIMAN M, ELDYASTI A. Ammonia-Oxidizing Bacteria (AOB): Opportunities and applications—a review. Reviews in Environmental Science and Bio/Technology, 2018, 17 (2): 285- 321. |
5 | WINOGRADSKY S. Contributions a la morphologie des organismes de la nitrification. Archives of Microbiology, 1892, (1): 88- 137. |
6 | DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria . Nature, 2015, 528 (7583): 504- 513. |
7 | XIA F, WANG J G, ZHU T, et al. Ubiquity and diversity of complete ammonia oxidizers (Comammox). Applied and Environmental Microbiology, 2018, 84 (24): 1- 14. |
8 | ZAKEM E J, AL-HAJ A, CHURCH M J, et al. Ecological control of nitrite in the upper ocean. Nature Communications, 2018, 9 (1): 1206. |
9 | SAITO M A, MCILVIN M R, MORAN D M, et al. Abundant nitrite-oxidizing metalloenzymes in the mesopelagic zone of the tropical Pacific Ocean. Nature Geoscience, 2020, 13 (5): 355- 362. |
10 | DAIMS H, LUCKER S, WAGNER M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends in Microbiology, 2016, 24 (9): 699- 712. |
11 | PESTER M, MAIXNER F, BERRY D, et al. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira . Environmental Microbiology, 2014, 16 (10): 3055- 3071. |
12 | DAIMS H, NIELSEN J L, NIELSEN P H, et al. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants . Applied & Environmental Microbiology, 2001, 67 (11): 5273- 5284. |
13 | ALAWI M, OFF S, KAYA M, et al. Temperature influences the population structure of nitrite-oxidizing bacteria in activated sludge. Environmental Microbiology Reports, 2009, 1 (3): 184- 190. |
14 | XIA Z, WANG Q, SHE Z, et al. Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process. Science of the Total Environment, 2019, 697, 134047. |
15 | USHIKI N, FUJITANI H, AOI Y, et al. Isolation of Nitrospira belonging to sublineage Ⅱ from a wastewater treatment plant . Microbes & Environments, 2013, 28 (3): 346- 353. |
16 | KOCH H, LUCKER S, ALBERTSEN M, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (36): 11371- 11376. |
17 | PALATINSZKY M, HERBOLD C, JEHMLICH N, et al. Cyanate as an energy source for nitrifiers. Nature, 2015, 524 (7563): 105- 108. |
18 | SPASOV E, TSUJI J M, HUG L A, et al. High functional diversity among Nitrospira populations that dominate rotating biological contactor microbial communities in a municipal wastewater treatment plant . Official Journal of the International Society for Microbial Ecology, 2020, 14 (7): 1857- 1872. |
19 | YANG Y, DAIMS H, LIU Y, et al. Activity and metabolic versatility of complete ammonia oxidizers in full-scale wastewater treatment systems. mBio, 2020, 11 (2): 1- 15. |
20 | KOCH H, GALUSHKO A, ALBERTSEN M, et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science, 2014, 345 (6200): 1052- 1054. |
21 | GRUBER-DORNINGER C, PESTER M, KITZINGER K, et al. Functionally relevant diversity of closely related Nitrospira in activated sludge . Official Journal of the International Society for Microbial Ecology, 2015, 9 (3): 643- 655. |
22 | JIANG X T, PENG X, DENG G H, et al. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microbial Ecology, 2013, 66 (1): 96- 104. |
23 | ZHANG H, ZHENG S, DING J, et al. Spatial variation in bacterial community in natural wetland-river-sea ecosystems. Journal of Basic Microbiology, 2017, 57 (6): 536- 546. |
24 | LIN X, HETHARUA B, LIN L, et al. Mangrove sediment microbiome: Adaptive microbial assemblages and their routed biogeochemical processes in Yunxiao Mangrove National Nature Reserve, China. Microbial Ecology, 2019, 78 (1): 57- 69. |
25 | CHI Z, WANG W, LI H, et al. Soil organic matter and salinity as critical factors affecting the bacterial community and function of Phragmites australis dominated riparian and coastal wetlands. Science of the Total Environment, 2021, 762, 1- 8. |
26 | BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30 (15): 2114- 2120. |
27 | LI D, LIU C M, LUO R, et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 2015, 31 (10): 1674- 1676. |
28 | KANG D D, FROULA J, EGAN R, et al. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ, 2015, (3): 1- 15. |
29 | PARKS D H, IMELFORT M, SKENNERTON C T, et al. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 2015, 25 (7): 1043- 1055. |
30 | MIKHEENKO A, PRJIBELSKI A, SAVELIEV V, et al. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics, 2018, 34 (13): 142- 150. |
31 | PARKS D H, CHUVOCHINA M, CHAUMEIL P A, et al. A complete domain-to-species taxonomy for bacteria and archaea. Nature Biotechnology, 2020, 38 (9): 1079- 1086. |
32 | PARKS D H, RINKE C, CHUVOCHINA M, et al. Recovery of nearly 8, 000 metagenome-assembled genomes substantially expands the tree of life. Nature Microbiology, 2017, 2 (11): 1533- 1542. |
33 | QU W, LIN D, ZHANG Z, et al. Metagenomics investigation of agarlytic genes and genomes in mangrove sediments in China: A potential repertory for carbohydrate-active enzymes. Front Microbiol, 2018, (9): 1- 16. |
34 | NGUYEN L T, SCHMIDT H A, VON H A, et al. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology & Evolution, 2015, 32 (1): 268- 274. |
35 | LETUNIC I, BORK P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 2021, 48 (W1): W293- W296. |
36 | YAMADA K D, TOMII K, KATOH K. Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees. Bioinformatics, 2016, 32 (21): 3246- 3251. |
37 | CRISCUOLO A, GRIBALDO S. BMGE (Block Mapping and Gathering with Entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evolutionary Biology, 2010, 10 (1): 1- 21. |
38 | MISTRY J, FINN R D, EDDY S R, et al. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Research, 2013, 41 (12): 1- 10. |
39 | HYATT D, CHEN G L, LOCASCIO P F, et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 2010, 11 (1): 119- 119. |
40 | CAMACHO C, COULOURIS G, AVAGYAN V, et al. BLAST + : Architecture and applications. BMC Bioinformatics, 2009, (10): 1- 9. |
41 | MORIYA Y, ITOH M, OKUDA S, et al. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Research, 2007, (35): W182- W185. |
42 | JAIN C, RODRIGUEZ R L, PHILLIPPY A M, et al. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications, 2018, 9 (1): 5114. |
43 | XU M, XIAO X, WANG F. Microbial diversity investigation and bioactive compounds screening in a metagenomic cosmid library from 5274 m deep-sea sediment sample of nodule Province. Proceedings of Isea, 2007, (2005): 209- 216. |
44 | SANTELLI C M, ORCUTT B N, BANNING E, et al. Abundance and diversity of microbial life in ocean crust. Nature, 2008, 453 (7195): 653- 656. |
45 | HOLMES A J, TUJULA N A, HOLLEY M, et al. Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environmental Microbiology, 2001, 3 (4): 256- 264. |
46 | GRAY C J, ENGEL A S. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer. Official Journal of the International Society for Microbial Ecology, 2013, 7 (2): 325- 337. |
47 | VAN K M A, SPETH D R, ALBERTSEN M, et al. Complete nitrification by a single microorganism. Nature, 2015, 528 (7583): 555- 559. |
48 | POGHOSYAN L, KOCH H, LAVY A, et al. Metagenomic recovery of two distinct comammox Nitrospira from the terrestrial subsurface . Environmental Microbiology, 2019, 21 (10): 3627- 3637. |
49 | PINCKNEY J L, PAERL H W, TESTER P, et al. The role of nutrient loading and eutrophication in estuarine ecology. Environmental Health Perspectives, 2001, 109 (5): 699- 706. |
50 | RABALAIS N N, TURNER R E, WISEMAN W J. Gulf of Mexico Hypoxia, A. K. A. “The Dead Zone”. Annual Review of Ecology and Systematics, 2002, 33 (1): 235- 263. |
51 | USHIKI N, FUJITANI H, SHIMADA Y, et al. Genomic analysis of two phylogenetically distinct Nitrospira species reveals their genomic plasticity and functional diversity . Front Microbiol, 2017, (8): 1- 12. |
52 | QIAN M, EATON J W, WOLFF S P. Cyanate-mediated inhibition of neutrophil myeloperoxidase activity. Biochemical Journal, 1997, 326 (1): 159- 166. |
53 | WIDNER B, MULHOLLAND M R, MOPPER K. Chromatographic determination of nanomolar cyanate concentrations in estuarine and sea waters by precolumn fluorescence derivatization. Analytical Chemistry, 2013, 85 (14): 6661- 6666. |
54 | GANESH S, BERTAGNOLLI A D, BRISTOW L A, et al. Single cell genomic and transcriptomic evidence for the use of alternative nitrogen substrates by anammox bacteria. Official Journal of the International Society for Microbial Ecology, 2018, 12 (11): 2706- 2722. |
55 | LUCKER S, NOWKA B, RATTEI T, et al. The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer . Frontiers in Microbiology, 2013, (4): 1- 19. |
56 | SUN X, KOP L F M, LAU M C Y, et al. Uncultured Nitrospina-like species are major nitrite oxidizing bacteria in oxygen minimum zones. Official Journal of the International Society for Microbial Ecology, 2019, 13 (10): 2391- 2402. |
57 | WALSH M A, OTWINOWSKI Z, PERRAKIS A, et al. Structure of cyanase reveals that a novel dimeric and decameric arrangement of subunits is required for formation of the enzyme active site. Structure, 2000, 8 (5): 505- 514. |
58 | BORK P, KOONIN E V. A new family of carbon-nitrogen hydrolases. Protein Science, 1994, (3): 1344- 1346. |
59 | PACE H C, BRENNER C. The nitrilase superfamily: Classification, structure and function. Genome Biology, 2001, 2 (1): 1- 9. |
60 | BAYER B, SAITO M A, Mcilvin M R, et al. Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and its proteomic response to oxygen-limited conditions . Official Journal of the International Society for Microbial Ecology, 2021, 15 (4): 1025- 1039. |
61 | WATSON S W, BOCK E, VALOIS F W, et al. Nitrospira marina gen. nov. sp. nov. : A chemolithotrophic nitrite-oxidizing bacterium . Archives of Microbiology, 1986, 144, 1- 7. |
62 | LEBEDEVA E V, ALAWI M, MAIXNER F, et al. Physiological and phylogenetic characterization of a novel lithoautotrophic nitrite-oxidizing bacterium, ‘Candidatus Nitrospira bockiana’ . International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 242- 250. |
63 | CHARLES A M, SUZUKI I. Purification and properties of sulfite: Cytochrome oxido-reductase from Thiobacillus novellus. Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation, 1966, 128 (3): 522- 534. |
64 | NUBEL T, KLUGHAMMER C, HUBER R, et al. Sulfide: Quinone oxidoreductase in membranes of the hyperthermophilic bacterium Aquifex aeolicus (VF5). Archives of Microbiology, 2000, 173 (4): 233- 244. |
65 | WAKAI S, KIKUMOTO M, KANAO T, et al. Involvement of sulfide: Quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. Bioscience Biotechnology & Biochemistry, 2004, 68 (12): 2519- 2528. |
66 | BODDICKER A M, MOSIER A C. Genomic profiling of four cultivated Candidatus Nitrotoga spp. predicts broad metabolic potential and environmental distribution . Official Journal of the International Society for Microbial Ecology, 2018, 12 (12): 2864- 2882. |
67 | FÜSSEL J, LÜCKER S, YILMAZ P, et al. Adaptability as the key to success for the ubiquitous marine nitrite oxidizer Nitrococcus . Science Advances, 2017, 3 (11): 1- 9. |
68 | PEDRONI P, VOLPE A D, GALLI G, et al. Characterization of the locus encoding the [Ni-Fe] sulfhydrogenase from the archaeon Pyrococcus furiosus: Evidence for a relationship to bacterial sulfite reductases. Microbiology, 1995, 141 (2): 449- 458. |
69 | VIGNAIS P M, BILLOUD B. Occurrence, classification, and biological function of hydrogenases: An overview. Chemical Reviews, 2007, 107 (10): 4206- 4272. |
70 | LUCKER S, WAGNER M, MAIXNER F, et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (30): 13479- 13484. |
71 | BALOGH S J, NOLLET Y H, SWAIN E B. Redox chemistry in minnesota streams during episodes of increased methylmercury discharge. Environmental Science & Technology, 2004, 38 (19): 4921- 4927. |
72 | 程皓, 陈桂珠, 叶志鸿. 红树林重金属污染生态学研究进展. 生态学报, 2009, 29 (7): 3893- 3900. |
73 | 刘庆, 谢文军, 游俊娥, 等. 湿地沉积物重金属环境化学行为研究进展. 土壤, 2013, 45 (1): 8- 16. |
74 | HOU L, XIE X, WAN X, et al. Niche differentiation of ammonia and nitrite oxidizers along a salinity gradient from the Pearl River estuary to the South China Sea [J]. Biogeosciences, 2018, 15(16): 5169-5187. |
75 | MAIXNER F, WAGNER M, LUCKER S, et al. Environmental genomics reveals a functional chlorite dismutase in the nitrite-oxidizing bacterium ‘Candidatus Nitrospira defluvii’ . Environmental Microbiology, 2008, 10 (11): 3043- 3056. |
76 | SATO T, KOBAYASHI Y. The ars operon in the skin element of bacillus subtilis confers resistance to arsenate and arsenite. Journal of Bacteriology, 1998, 180 (7): 1655- 1661. |
77 | SCHIERING N, KABSCH W, MOORE M J, et al. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607 . Nature, 1991, 352 (6331): 168- 172. |
78 | GRACE S C. Phylogenetic distribution of superoxide dismutase supports an endosymbiotic origin for chloroplasts and mitochondria. Life Sciences, 1990, 47 (21): 1875- 1886. |
79 | LINDSKOG S. Structure and mechanism of carbonic anhydrase. Pharmacology & Therapeutics, 1997, 74 (1): 1- 20. |
80 | AKAI M, ONAI K, MORISHITA M, et al. Aquaporin AqpZ is involved in cell volume regulation and sensitivity to osmotic stress in Synechocystis sp. strain PCC 6803. Journal of Bacteriology, 2012, 194 (24): 6828- 6836. |
81 | CHANG G, SPENCER R H, LEE A T, et al. Structure of the MscL homolog from mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science, 1998, 282 (5397): 2220- 2226. |
82 | CAPP M W, PEGRAM L M, SAECKER R M, et al. Interactions of the osmolyte glycine betaine with molecular surfaces in water: Thermodynamics, structural interpretation, and prediction of m-values. Biochemistry, 2009, 48 (43): 10372- 10379. |
83 | GIOVANNONI S J, TRIPP H J, GIVAN S, et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science, 2005, 309 (5738): 1242- 1245. |
84 | PENN K, JENSEN P R. Comparative genomics reveals evidence of marine adaptation in Salinispora species. BMC Genomics, 2012, (13): 1- 12. |
85 | MAKAROVA K S, WOLF Y I, ALKHNBASHI O S, et al. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 2015, 13 (11): 722- 736. |
86 | TOCK M R, DRYDEN D T. The biology of restriction and anti-restriction. Current Opinion in Microbiology, 2005, 8 (4): 466- 472. |
87 | ANBA J, BIDNENKO E, HILLIER A, et al. Characterization of the lactococcal abiD1 gene coding for phage abortive infection. Journal of Bacteriology, 1995, 177 (13): 3818- 3823. |
88 | FINERAN P C, BLOWER T R, FOULDS I J, et al. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106 (3): 894- 899. |
89 | GOLDFARB T, SBERRO H, WEINSTOCK E, et al. BREX is a novel phage resistance system widespread in microbial genomes. The Embo Journal, 2015, 34 (2): 169- 183. |
90 | SUTTLE C A. Marine viruses-major players in the global ecosystem. Nature Reviews Microbiology, 2007, 5 (10): 801- 812. |
91 | THOMAS C M, NIELSEN K M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Reviews Microbiology, 2005, 3 (9): 711- 721. |
92 | WEINBAUER M G, RASSOULZADEGAN F. Are viruses driving microbial diversification and diversity?. Environmental Microbiology, 2004, 6 (1): 1- 11. |
93 | CAMBILLAU C, CLAVERIE J M. Structural and genomic correlates of hyperthermostability. Journal of Biological Chemistry, 2000, 275 (42): 32383- 32386. |
94 | SUHRE K, CLAVERIE J M. Genomic correlates of hyperthermostability, an update. Journal of Biological Chemistry, 2003, 278 (19): 17198- 17202. |
95 | SAUER D B, WAGNER M. Prediction of optimal growth temperature using only genome derived features. Bioinformatics, 2018, (18): 1- 27. |
[1] | 蒋德明, 马海龙, 古丽斯坦·努尔艾合麦提, 买尔丹·帕力合提. 华东师范大学在校生皮肤上葡萄球菌类型及其抗药性分析[J]. 华东师范大学学报(自然科学版), 20120, 2012(6): 122-130,138. |
[2] | 李媛媛, 商侃侃, 张希金, 宋坤. 上海辰山植物园木本植物幼枝导管特征及其权衡关系[J]. 华东师范大学学报(自然科学版), 2021, 2021(2): 142-150. |
[3] | 祝静静, 黎万顺, 高 虹, 徐 通, 鲍秋颖, 郑永祥, 周德敏, 夏 钢. 脆蛇转录组序列的分析和系统发育定位[J]. 华东师范大学学报(自然科学版), 2014, 2014(4): 102-112. |
[4] | 胡天印;郭水良;施雪莲 . 基于叶绿体rbcL等3个基因的木灵藓科植物属的系统发育 [J]. 华东师范大学学报(自然科学版), 2008, 2008(1): 129-138. |
[5] | 禹娜;赵梅英;陈立侨*;李恺. 基于18S rDNA序列研究腺介虫亚目系统发育关系[J]. 华东师范大学学报(自然科学版), 2005, 2005(4): 78-86. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||