1 |
STOCKER T F, QIN D, PLATTNER G K, et al. Climate change 2013: The physical science basis [R]// Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
|
2 |
GATTUSO J P, MAGNAN A, BILLÉ R, et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios . Science, 2015, 349 (6243): c4722.
|
3 |
刘晓辉, 孙丹青, 黄备, 等. 东海沿岸海域表层海水酸化趋势及影响因素研究. 海洋与湖沼, 2017, 48, 398- 405.
|
4 |
石强, 杨鹏金, 霍素霞, 等. 近36年来渤海海水酸化进程 [C]// 中国环境科学学会学术年会(昆明, 2013). 北京: 中国环境科学学会, 2013.
|
5 |
杨顶田, 单秀娟, 刘素敏, 等. 三亚湾近10年 pH 的时空变化特征及对珊瑚礁石影响分析. 南方水产科学, 2013, (9): 1- 7.
|
6 |
MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: The physical science basis [R]// Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021.
|
7 |
GAO K, BEARDALL J, HÄDER D, et al. Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation. Frontiers in Marine Science, 2019, (6): 322.
|
8 |
FU F, ZHANG Y, WARNER M E, et al. A comparison of future increased CO2 and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum . Harmful Algae, 2008, 7 (1): 76- 90.
|
9 |
ERRERA R M, YVON-LEWIS S, KESSLER J D, et al. Reponses of the dinoflagellate Karenia brevis to climate change: pCO2 and sea surface temperatures . Harmful Algae, 2014, 37, 110- 116.
|
10 |
OU G, WANG H, SI R, et al. The dinoflagellate Akashiwo sanguinea will benefit from future climate change: The interactive effects of ocean acidification, warming and high irradiance on photo physiology and hemolytic activity . Harmful Algae, 2017, 68, 118- 127.
|
11 |
WANG H, NIU X, FENG X, et al. Effects of ocean acidification and phosphate limitation on physiology and toxicity of the dinoflagellate Karenia mikimotoi . Harmful Algae, 2019, 87, 101621.
|
12 |
DUTKIEWICZ S, MORRIS J J, FOLLOWS M J, et al. Impact of ocean acidification on the structure of future phytoplankton communities. Nature Climate Change, 2015, 5 (11): 1002- 1006.
|
13 |
GOBLER C J, DOHERTY O M, HATTENRATH-LEHMANN T K, et al. Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proceedings of the National Academy of Sciences, 2017, 114 (19): 4975- 4980.
|
14 |
HALLEGRAEFF G M. Ocean climate change, phytoplankton community response, and harmful algal blooms: A formidable predictive challenge. Journal of Phycology, 2010, 46 (2): 220- 235.
|
15 |
SHIKATA T, YOSHIKAWA S, MATSUBARA T, et al. Growth dynamics of Heterosigma akashiwo (Raphidophyceae) in Hakata Bay, Japan . European Journal of Phycology, 2008, 43 (4): 395- 411.
|
16 |
KEMPTON J, KEPPLER C J, LEWITUS A, et al. A novel Heterosigma akashiwo (Raphidophyceae) bloom extending from a South Carolina Bay to offshore waters . Harmful Algae, 2008, 7 (2): 235- 240.
|
17 |
BUTRÓN A, MADARIAGA I, ORIVE E. Tolerance to high irradiance levels as a determinant of the bloom-forming Heterosigma akashiwo success in estuarine waters in summer . Estuarine, Coastal and Shelf Science, 2012, 107, 141- 149.
|
18 |
JI N, LIN L, LI L, et al. Metatranscriptome analysis reveals environmental and diel regulation of a Heterosigma akashiwo (Raphidophyceae) bloom . Environmental Microbiology, 2018, 20 (3): 1078- 1094.
|
19 |
LU D, QI Y, GU H, et al. Causative species of harmful algal blooms in Chinese coastal waters. Algological Studies, 2014, 145/146, 145- 168.
|
20 |
尹翠玲, 张秋丰, 胡延忠, 等. 2006年夏季渤海湾赤潮重点监控区的赤潮生物. 海洋湖沼通报, 2008, (1): 114- 119.
|
21 |
王年斌, 周遵春, 马志强, 等. 大连湾赤潮异弯藻赤潮的多元分析. 海洋学报, 2006, (3): 151- 156.
|
22 |
MEHDIZADEH ALLAF M, TRICK C G. Multiple-stressor design-of-experiment (DOE) and one-factor-at-a-time (OFAT) observations defining Heterosigma akashiwo growth and cell permeability . Journal of Applied Phycology, 2019, 31 (6): 3515- 3526.
|
23 |
KOK J W K, YEO D C J, LEONG S C Y. Growth and physiological responses of a tropical toxic marine microalga Heterosigma akashiwo (Heterokontophyta: Raphidophyceae) from Singapore waters to varying nitrogen sources and light conditions . Ocean Science Journal, 2015, 50 (3): 491- 508.
|
24 |
GE W, YIN X, CHAI C, et al. Bioaccumulation of PBDE congener 2, 2′ , 4, 4′ -tetrabromodiphenyl ether by Heterosigma akashiwo in response to different nutrient concentrations . Oceanological and Hydrobiological Studies, 2013, 42 (2): 139- 148.
|
25 |
MARTÍNEZ R, ORIVE E, LAZA-MARTÍNEZ A, et al. Growth response of six strains of Heterosigma akashiwo to varying temperature, salinity and irradiance conditions . Journal of Plankton Research, 2010, 32 (4): 529- 538.
|
26 |
MARAÑÓN E, LORENZO M P, CERMEÑO P, et al. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates. The ISME Journal, 2018, 12 (7): 1836- 1845.
|
27 |
HENNON G M M, WILLIAMSON O M, HERNÁNDEZ LIMÓN M D, et al. Non-linear physiology and gene expression responses of harmful alga Heterosigma akashiwo to rising CO2. Protist, 2019, 170 (1): 38- 51.
|
28 |
白玫, 吴辉. 利用SOM神经网络研究长江口邻近海域海表温度特征. 华东师范大学学报(自然科学版), 2018, (4): 184- 195.
|
29 |
施沈阳. 长江口及其附近海域营养盐和浮游植物时空分布数值模拟 [D]. 上海: 华东师范大学, 2020.
|
30 |
FU F X, PLACE A R, GARCIA N S, et al. CO2 and phosphate availability control the toxicity of the harmful bloom dinoflagellate Karlodinium veneficum . Aquatic Microbial Ecology, 2010, 59, 55- 65.
|
31 |
ADOLF J E, BACHVAROFF T R, PLACE A R. Environmental modulation of karlotoxin levels in strains of the cosmopolitan dinoflagellate Karlodinium veneficum (Dinophyceae) . Journal of phycology, 2009, 45 (1): 176- 192.
|
32 |
GUAN W, LI P. Dependency of UVR-induced photoinhibition on atomic ratio of N to P in the dinoflagellate Karenia mikimotoi . Marine Biology, 2017, 164, 31.
|
33 |
LEMA K A, LATIMIER M, NÉZAN É, et al. Inter and intra-specific growth and domoic acid production in relation to nutrient ratios and concentrations in Pseudo-nitzschia: phosphate an important factor . Harmful Algae, 2017, 64, 11- 19.
|
34 |
YAMAGUCHI H, SAI K. Simulating the vertical dynamics of phosphate and their effects on the growth of harmful algae. Estuarine, Coastal and Shelf Science, 2015, 164, 425- 432.
|
35 |
BAEK S H, LEE M, KIM Y. Spring phytoplankton community response to an episodic windstorm event in oligotrophic waters offshore from the Ulleungdo and Dokdo islands, Korea. Journal of Sea Research, 2018, 132, 1- 14.
|
36 |
曾玲, 龙超, 文菁. 营养盐限制对利马原甲藻生长和产毒的影响. 广东农业科学, 2018, 45 (2): 135- 144.
|
37 |
HENNON G M M, HERNÁNDEZ LIMÓN M D, HALEY S T, et al. Diverse CO2-induced responses in physiology and gene expression among eukaryotic phytoplankton . Frontiers in Microbiology, 2017, (8): 2547.
|
38 |
GAO K, HELBLING E W, HÄDER D, et al. Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming [J]. Marine Ecology Progress Series. 2012, 470: 167-190.
|
39 |
BRANDENBURG K M, VELTHUIS M, VAN DE WAAL D B. Meta‐analysis reveals enhanced growth of marine harmful algae from temperate regions with warming and elevated CO2 levels . Global Change Biology, 2019, 25 (8): 2607- 2618.
|
40 |
ZHANG Y H, FU F X, WHEREAT E, et al. Bottom-up controls on a mixed-species HAB assemblage: A comparison of sympatric Chattonella subsalsa and Heterosigma akashiwo (Raphidophyceae) isolates from the Delaware Inland Bays, USA . Harmful Algae, 2006, 5 (3): 310- 320.
|
41 |
王燕, 宋洪军, 李艳, 等. 温度对赤潮异弯藻生长速率及细胞体积和生化组成影响的研究. 中国海洋大学学报, 2015, 45 (1): 041- 046.
|
42 |
颜天, 周名江, 钱培元. 赤潮异弯藻 Heterosigma akashiwo 的生长特性 . 海洋与湖沼, 2002, 33 (2): 209- 214.
|
43 |
ONO K, KHAN S, ONOUE Y. Effect of temperature and light intensity on the growth and toxicity of Heterosigma akashiwo (Raphidophyceae) . Aquaculture Research, 2000, 31, 417- 433.
|
44 |
STRAMSKI D, SCIANDRA A, CLAUSTRE H. Efffect of temperature, nitrogen, and light imitation on the optical properties of the marine datiom Thalassiosira pseudonana . Limnology and Oceanography, 2002, 47 (2): 392- 403.
|
45 |
GRIFFITH A W, DOHERTY O M, GOBLER C J. Ocean warming along temperate western boundaries of the Northern Hemisphere promotes an expansion of Cochlodinium polykrikoides blooms . Proceedings of the Royal Society B: Biological Sciences, 2019, 286 (1904): 20190340.
|
46 |
MOORE S K, MANTUA N J, HICKEY B M, et al. Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events. Harmful Algae, 2009, 8 (3): 463- 477.
|