1 |
HUANG J J, HUNG C S, SU H M. Biogeochemical responses to the removal of maricultural structures from an eutrophic lagoon (Tapong Bay) in Taiwan[J]. Marine Environmental Research. 2008, 65(1): 1-17.
|
2 |
崔经国. 海河流域典型河流周丛生物的生态计量学研究[D]. 北京: 中国科学院研究生院, 2011.
|
3 |
SONG C F, LIN J, HUANG X L, et al. Effect of butyl paraben on the development and microbial composition of periphyton[J]. Ecotoxicology, 2016, 25(2) : 342-349.
|
4 |
WU Y H, LI T L, YANG L Z. Mechanisms of removing pollutants from aqueous solutions by microorganisms and their aggregates: A review[J]. Bioresource Technology. 2012, 107: 10-18.
|
5 |
MORENO-GARRIDO I. Microalgae immobilization: Current techniques and uses[J]. Bioresource Technology, 2008, 99(10): 3949-3964.
|
6 |
CRAGGS R J, ADEY W H, JENSON K R, et al.. Phosphorus removal from wastewater using an algal turf scrubber. Water Science and Technology, 1996, 33 (7): 191- 198.
|
7 |
郭婷. 周丛生物膜对稻田土壤中砷迁移转化的影响及作用机制[D] 杭州: 浙江大学, 2021
|
8 |
CATES E L, KIM J H.. Bench-scale evaluation of water disinfection by visible-to-UVC upconversion under high-intensity irradiation. Journal of Photochemistry and Photobiology B: Biology, 2015, 153, 405- 411.
|
9 |
RITTMANN B E. Biofilms, active substrata, and me [J]. Water Research, 2018, 132: 135-145.
|
10 |
HENDREY G R. Acid rain and deposition [M]// LEVIN S A. Encyclopedia of Biodiversity. Amsterdam: Elsevier, 2001: 1-15.
|
11 |
ZHU N Y, WU Y H, TANG J, et al.. A new concept of promoting nitrate reduction in surface waters: Simultaneous supplement of denitrifiers, electron donor pool and electron mediators. Environmental Science & Technology, 2018, 52 (15): 8617- 8626.
|
12 |
XING D, WU Y, YU R, et al.. Photosynthetic capability and Fe, Mn, Cu, and Zn contents in two moraceae species under different phosphorus levels. Acta Geochimica, 2016, 35 (3): 309- 315.
|
13 |
吴国平, 高孟宁, 唐骏, 等.. 自然生物膜对面源污水中氮磷去除的研究进展. 生态与农村环境学报, 2019, 35 (7): 817- 825.
|
14 |
CATTANEO A.. Periphyton in lakes of different trophy. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44 (2): 296- 303.
|
15 |
MURDOCK J N, DOUGLAS SHIELDS F J, LIZOTTE R E J.. Periphyton responses to nutrient and atrazine mixtures introduced through agricultural runoff. Ecotoxicology, 2013, 22 (2): 215- 230.
|
16 |
HILLEBRAND H, SOMMER U.. The nutrient stoichiometry of benthic microalgal growth: Redfield proportions are optimal. Limnology and Oceanography, 1999, 44 (2): 440- 446.
|
17 |
HILLEBRAND H, KAHLERT M.. Effect of grazing and nutrient supply on periphyton biomass and nutrient stoichiometry in habitats of different productivity. Limnology and Oceanography, 2001, 46 (8): 1881- 1898.
|
18 |
PANDEY U.. The influence of DOC trends on light climate and periphyton biomass in the Ganga River, Varanasi, India. Bulletin of Environmental Contamination and Toxicology, 2013, 90 (1): 143- 147.
|
19 |
HILLEBRAND H, DE MONTPELLIER G, LIESS A.. Effects of macrograzers and light on periphyton stoichiometry. Oikos, 2004, 106 (1): 93- 104.
|
20 |
BATTIN T J, BESEMER K, BENGTSSON M M, et al.. The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology, 2016, 14 (4): 251- 263.
|
21 |
SUN P F, ZHANG J H, ESQUIVEL-ELIZONDO S, et al. Uncovering the flocculating potential of extracellular polymeric substances produced by periphytic biofilms [J]. Bioresource Technology, 2018, 248: 56-60.
|
22 |
ROSI-MARSHALL E J, ROYER T V.. Pharmaceutical compounds and ecosystem function: An emerging research challenge for aquatic ecologists. Ecosystems, 2012, 15 (6): 867- 880.
|
23 |
XU Y, WU Y H, ESQUIVEL-ELIZONDO S, et al. Using microbial aggregates to entrap aqueous phosphorus [J]. Trends in Biotechnology, 2020, 38(11): 1292-1303.
|
24 |
央初卓玛, 蔡露, 唐宇, 等.. 活性污泥法处理城市污水研究进展. 辽宁化工, 2024, 53 (2): 269- 271.
|
25 |
郝凯越, 赵立帅, 宗永臣, 等.. 基于微观和宏观角度下活性污泥性能的研究. 高原农业, 2022, 6 (4): 377- 386.
|
26 |
赵佐平, 屈凯静, 胡思雨, 等.. 壳聚糖活性污泥复合吸附剂对含锰、镍废水处理的研究. 电镀与精饰, 2022, 44 (8): 51- 57.
|
27 |
施春红, 江嘉诚, 张玉琦, 等.. MBR处理农村生活污水及膜污染控制研究进展. 水处理技术, 2024, 50 (2): 20- 25.
|
28 |
KRZEMINSKI P, LEVERETTE L, MALAMIS S, et al.. Membrane bioreactors–A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. Journal of Membrane Science, 2017, 527, 207- 227.
|
29 |
桂鑫蕊, 张会宁, 袁鑫, 等.. 生物滤池对N-DBPs前体物控制的研究进展. 给水排水, 2022, 58 (S1): 687- 693.
|
30 |
XIANG H, LU X W, YIN L H, et al.. Microbial community characterization, activity analysis and purifying efficiency in a biofilter process. Journal of Environmental Sciences, 2013, 25 (4): 677- 687.
|
31 |
王健, 陈文兵, 黄传伟, 等.. 序批式生物膜法除磷技术研究现状. 水科学与工程技术, 2008, (S2): 22- 24.
|
32 |
刘雨, 赵庆良, 郑兴灿. 生物膜法污水处理技术 [M]. 北京: 中国建筑工业出版社, 2000.
|
33 |
黄俊, 邵林广. SBBR工艺的现状与发展 [J]. 重庆环境科学 2003(6): 46-48.
|
34 |
INGLETT P W, REDDY K R, MCCORMICK P V.. Periphyton chemistry and nitrogenase activity in a northern Everglades ecosystem. Biogeochemistry, 2004, 67, 213- 233.
|
35 |
VARGAS R, NOVELO E.. Seasonal changes in periphyton nitrogen fixation in a protected tropical wetland. Biology and Fertility of Soils, 2007, 43, 367- 372.
|
36 |
STEWART W D P, SAMPAIO M J, ISICHEI A O, et al. Nitrogen fixation by soil algae of temperate and tropical soils [M]// DÖBEREINER J, BURRIS R H, HOLLAENDER A, et al. Limitations and Potentials for Biological Nitrogen Fixation in the Tropics. Boston, MA: Springer US, 1978: 41-63.
|
37 |
WEISNER S E, ERIKSSON P G, GRANÉLI W, et al.. Influence of macrophytes on nitrate removal in wetlands. AMBIO: A Journal of the Human Environment, 1994, 23, 363- 366.
|
38 |
WU Y H, LIU J Z, RENE E R.. Periphytic biofilms: A promising nutrient utilization regulator in wetlands. Bioresource Technology, 2018, 248, 44- 48.
|
39 |
况琪军, 马沛明, 刘国祥, 等.. 大型丝状绿藻对 N、P 去除效果研究. 水生生物学报, 2004, 28 (3): 323- 326.
|
40 |
WU Y H, KERR P G, HU Z Y, et al.. Removal of cyanobacterial bloom from a biopond–wetland system and the associated response of zoobenthic diversity. Bioresource Technology, 2010, 101 (11): 3903- 3908.
|
41 |
赵婧宇, 韩建刚, 孙朋飞, 等.. 周丛生物对稻田氨挥发的影响. 土壤学报, 2021, 58 (5): 1267- 1277.
|
42 |
KALSCHEUR K N, ROJAS M, PETERSON C G, et al.. Algal exudates and stream organic matter influence the structure and function of denitrifying bacterial communities. Microbial Ecology, 2012, 64 (4): 881- 892.
|
43 |
张启明, 铁文霞, 尹斌, 等.. 藻类在稻田生态系统中的作用及其对氨挥发损失的影响. 土壤, 2006, 38 (6): 814- 819.
|
44 |
孙瑞, 孙朋飞, 吴永红.. 不同稻田生态系统周丛生物对水稻种子萌发和幼苗生长的影响. 土壤学报, 2022, 59 (1): 231- 241.
|
45 |
王思楚. 周丛生物对稻田碳排放的影响与机制 [D]. 北京: 中国科学院大学, 2021.
|
46 |
梁霞, 李小平, 史雅娟.. 周丛藻类水质处理系统中氮、磷污染物去除效果研究. 环境科学学报, 2008, 28 (4): 695- 704.
|
47 |
郭军权, 吴永红.. 基于周丛生物的“生态沟渠-人工湿地”处理高负荷农业面源污水影响研究. 陕西农业科学, 2019, 65 (12): 34- 37.
|
48 |
GAO X P, WANG Y, SUN B W, et al.. Nitrogen and phosphorus removal comparison between periphyton on artificial substrates and plant-periphyton complex in floating treatment wetlands. Environmental Science and Pollution Research International, 2019, 26 (21): 21161- 21171.
|
49 |
LU H Y, FENG Y F, WU Y H, et al.. Phototrophic periphyton techniques combine phosphorous removal and recovery for sustainable salt-soil zone. Science of the Total Environment, 2016, 568, 838- 844.
|
50 |
吴永红, 夏永秋, 李九玉. 稻田周丛生物 [M]. 北京: 科学出版社, 2021.
|
51 |
高孟宁, 徐滢, 吴永红.. 高效富集磷的周丛生物构建及其特征分析. 农业环境科学学报, 2021, 40 (9): 1982- 1989.
|
52 |
申祺, 马凌云, 黄裕普, 等.. 周丛生物在稻田生态系统中的作用研究进展. 北方水稻, 2022, 52 (2): 61- 64.
|
53 |
WANG S C, SUN P F, ZHANG G B, et al.. Contribution of periphytic biofilm of paddy soils to carbon dioxide fixation and methane emissions. The Innovation, 2022, 3 (1): 100192.
|
54 |
FLIPO N, RABOUILLE C, POULIN M, et al.. Primary production in headwater streams of the Seine basin: The Grand Morin river case study. Science of the Total Environment, 2007, 375 (1/2/3): 98- 109.
|
55 |
JACOTOT A, MARCHAND C, ALLENBACH M. Biofilm and temperature controls on greenhouse gas (CO2 and CH4) emissions from a Rhizophora mangrove soil (New Caledonia) [J]. Science of the Total Environment, 2019, 650: 1019-1028.
|
56 |
LEOPOLD A, MARCHAND C, DEBORDE J, et al.. Influence of mangrove zonation on CO2 fluxes at the sediment–air interface (New Caledonia). Geoderma, 2013, 202, 62- 70.
|
57 |
GUTTMAN L, BOXMAN S E, BARKAN R, et al.. Combinations of ulva and periphyton as biofilters for both ammonia and nitrate in mariculture fishpond effluents. Algal Research, 2018, 34, 235- 243.
|
58 |
张润, 施天宇, 景连东.. 高强度紫外线对周丛生物膜除磷以及光合作用的影响研究. 西南民族大学学报(自然科学版), 2022, 48 (6): 591- 597.
|
59 |
谷雪维, 林漪, 卢迪, 等.. 不同氮磷浓度下周丛生物对水体中磺胺和恩诺沙星的去除. 应用生态学报, 2021, 32 (11): 4129- 4138.
|
60 |
KANG D, ZHAO Q C, WU Y H, et al. Removal of nutrients and pharmaceuticals and personal care products from wastewater using periphyton photobioreactors [J]. Bioresource Technology, 2018, 248: 113-119.
|
61 |
SHABBIR S, FAHEEM M, WU Y H.. Decolorization of high concentration crystal violet by periphyton bioreactors and potential of effluent reuse for agricultural purposes. Journal of Cleaner Production, 2018, 170, 425- 436.
|
62 |
LIU J N, ZANG H D, XU H S, et al.. Methane emission and soil microbial communities in early rice paddy as influenced by urea-N fertilization. Plant and Soil, 2019, 445, 85- 100.
|
63 |
LIU J Z, TANG J, WAN J J, et al.. Functional sustainability of periphytic biofilms in organic matter and Cu2+ removal during prolonged exposure to TiO2 nanoparticles. Journal of Hazardous Materials, 2019, 370, 4- 12.
|
64 |
YANG J L, LIU J Z, WU C X, et al.. Bioremediation of agricultural solid waste leachates with diverse species of Cu (Ⅱ) and Cd (Ⅱ) by periphyton. Bioresource Technology, 2016, 221, 214- 221.
|
65 |
徐滢. 周丛生物回收磷和稀土的群体感应机制及其技术[D]. 南京: 中国科学院南京土壤研究所. 2022
|
66 |
AZIM M E. Photosynthetic periphyton and surfaces [M]//Encyclopedia of Inland Waters. Amsterdam: Elsevier, 2009: 184-191 .
|
67 |
VADEBONCOEUR Y, JEPPESEN E, VANDER ZANDEN M J, et al.. From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography, 2003, 48 (4): 1408- 1418.
|
68 |
CAI T, PARK S Y, LI Y B.. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 2013, 19, 360- 369.
|
69 |
VADEBONCOEUR Y, STEINMAN A D.. Periphyton function in lake ecosystems. The Scientific World Journal, 2002, 2 (1): 1449- 1468.
|
70 |
SAIKIA S K.. Review on periphyton as mediator of nutrient transfer in aquatic ecosystems. Ecologia Balkanica, 2011, 3 (2): 65- 78.
|