华东师范大学学报(自然科学版) ›› 2025, Vol. 2025 ›› Issue (3): 26-32.doi: 10.3969/j.issn.1000-5641.2025.03.004

• 物理学与电子学 • 上一篇    下一篇

强相互作用Rydberg气体中的自组织光学斑图

沈嘉宁, 白正阳*()   

  1. 华东师范大学 精密光谱科学与技术国家重点实验室, 上海 200241
  • 收稿日期:2024-12-24 出版日期:2025-05-25 发布日期:2025-05-28
  • 通讯作者: 白正阳 E-mail:zhybai@lps.ecnu.edu.cn
  • 基金资助:
    国家自然科学基金(12274131)

Self-organized optical patterns in strongly interacting Rydberg gases

Jianing SHEN, Zhengyang BAI*()   

  1. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
  • Received:2024-12-24 Online:2025-05-25 Published:2025-05-28
  • Contact: Zhengyang BAI E-mail:zhybai@lps.ecnu.edu.cn

摘要:

理论研究了在非均匀耦合光束作用下, Rydberg原子气体中光的非线性传播动力学. 通过电磁感应透明(electromagnetically induced transparency, EIT)效应, Rydberg原子之间的长程相互作用可以有效映射到光场上, 从而产生很强的光子-光子相互作用. 以往的研究中, 耦合光场被视为空间均匀的常数场, 光场的相互作用具有空间平移不变性的势能. 在排斥原子相互作用的情况下, 当探测光场的强度超过临界阈值时, 由于动量空间中roton模式的不稳定性, 体系会发生一级相变, 系统会自组织形成光学斑图. 但在实际实验中, 耦合光的空间分布往往是非均匀的, 这种非均匀性一定程度上会破坏体系的空间平移不变性. 计算显示, 当考虑有限耦合光束腰, 在原子密度较低时, 系统依然可以自组织形成光学图案结构; 但随着原子密度的增加, 由于体系的非均匀激发增加, 斑图边缘处的结构会被破坏. 该结果不仅有助于发展Rydberg非线性光学, 还对在多体体系中设计新型非线性光学器件有着潜在的应用.

关键词: Rydberg原子, 电磁感应透明, 自组织结构

Abstract:

In this study, light propagation and electromagnetically induced transparency(EIT) in cold Rydberg atomic gas were theoretically investigated, using an inhomogeneous coupling beam. By virtue of EIT, the strong long-range atom-atom interactions in Rydberg states are mapped to light fields, resulting in strong photonic interaction. In previous studies, the coupled optical field was considered as spatially uniform and constant, with the interaction of the optical field possessing potential energy with spatial translation invariance. In the case of repulsive atomic interactions, when the intensity of the probe light field exceeds a critical threshold, the system undergoes a first-order phase transition because of the instability of the roton mode in momentum space, leading to self-organization of the system into optical patterns. However, in recent experiments, the spatial distribution of coupled light has often been nonuniform, and this nonuniformity can destroy the spatial translation invariance of the system. Our calculations show that when considering a large beam waist with coupling, the system can still self-organize into optical pattern structures at low atomic densities. However, as the atomic density increases, the edges of the patterns can be disrupted due to an increase in nonuniform excitation. The results of this study not only contribute to the development of Rydberg nonlinear optics but also have potential applications in the design of novel nonlinear optical devices in many-body systems.

Key words: Rydberg atom, electromagnetically induced transparency, self-organizing structure

中图分类号: