1 |
PASTOR-SATORRAS R, VESPIGNANI A.. Epidemic spreading in scale-free networks. Physical Review Letters, 2001, 86(14), 3200- 3203.
|
2 |
PASTOR-SATORRAS R, CASTELLANO C, VAN MIEGHEM P, et al.. Epidemic processes in complex networks. Reviews of Modern Physics, 2015, 87(3), 925- 979.
|
3 |
PIRES S. Building country-level capacity to estimate the burden of COVID-19 [J]. European Journal of Public Health, 2021: 31(5): iii238.
|
4 |
CHEN Y P, PAUL G, HAVLIN S, et al.. Finding a better immunization strategy. Physical Review Letters, 2008, 101(5), 058701.
|
5 |
LI R Y, PEI S, CHEN B, et al.. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science, 2020, 368(6490), 489- 493.
|
6 |
HSIANG S, ALLEN D, ANNAN-PHAN S, et al.. The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature, 2020, 584, 262- 267.
|
7 |
JONES V, JOHNSON A, COLLINS M, et al.. “How long will Covid-19 last?” and other questions youth ask physicians about COVID-19. Health Behavior and Policy Review, 2020, 7(4), 342- 346.
|
8 |
MATSUMURA Y, NAGAO M, YAMAMOTO M, et al.. Transmissibility of SARS-CoV-2 B. 1.1. 214 and Alpha variants during 4 COVID-19 waves, Kyoto, Japan, January 2020–June 2021. Emerging Infectious Diseases, 2022, 28(8), 1569- 1577.
|
9 |
HE S B, PENG Y X, SUN K H.. SEIR modeling of the COVID-19 and its dynamics. Nonlinear Dynamics, 2020, 101, 1667- 1680.
|
10 |
ZHAI Z M, LONG Y S, TANG M, et al.. Optimal inference of the start of COVID-19. Physical Review Research, 2021, 3(1), 013155.
|
11 |
SORENSEN R J D, BARBER R M, PIGOTT D M, et al.. Variation in the COVID-19 infection–fatality ratio by age, time, and geography during the pre-vaccine era: A systematic analysis. The Lancet, 2022, 399(10334), 1469- 1488.
|
12 |
FLAXMAN S, MISHRA S, GANDY A, et al.. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature, 2020, 584, 257- 261.
|
13 |
SALJE H, KIEM CT, LEFRANCQ N, et al.. Estimating the burden of SARS-CoV-2 in France. Science, 2020, 369(6500), 208- 211.
|
14 |
CHINAZZI M, DAVIS J T, AJELLI M, et al.. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 2020, 368(6489), 395- 400.
|
15 |
SAAD-ROY C M, WAGN C E, BAKER R E, et al.. Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years. Science, 2020, 370(6518), 811- 818.
|
16 |
BRITTON T, BALL F, TRAPMAN P.. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science, 2020, 369(6505), 846- 849.
|
17 |
BAKER R E, PARK S W, YANG W C, et al.. The impact of COVID-19 nonpharmaceutical interventions on the future dynamics of endemic infections. PNAS, 2020, 117(48), 30547- 30553.
|
18 |
ARENAS A, COTA W, GÓMEZ-GARDEÑES J, et al.. Modeling the spatiotemporal epidemic spreading of COVID-19 and the impact of mobility and social distancing interventions. Physical Review X, 2020, 10(4), 041055.
|
19 |
ALETA A, MARTÍN-CORRAL D, PASTORE Y PIONTTI A, et al.. Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nature Human Behaviour, 2020(4), 964- 971.
|
20 |
YANG Q H, YI C L, VAJDI A, et al.. Short-term forecasts and long-term mitigation evaluations for the COVID-19 epidemic in Hubei Province, China. Infectious Disease Modelling, 2020(5), 563- 574.
|
21 |
BASNARKOV L, TOMOVSKI I, SANDEV T, et al.. Non-Markovian SIR epidemic spreading model of COVID-19. Chaos, Solitons and Fractals, 2022, 160, 112286.
|
22 |
中国-世界卫生组织新型冠状病毒肺炎联合考察组. 中国-世界卫生组织新型冠状病毒肺炎(COVID-19)联合考察报告[R/OL].(2020-02-29)[2024-03-05].http://www.nhc.gov.cn/jkj/s3578/202002/87fd92510d094e4b9bad597608f5cc2c.shtml.
|
23 |
LEVENBERG K.. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 1944, 2 (2): 164- 168.
|
24 |
MARQUARDT D W.. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 1963, 11 (2): 431- 441.
|
25 |
KALTENBACHER B, NEUBAUER A , SCHERZER O. Iterative Regularization Methods for Nonlinear Ill-Posed Problems [M]. Berlin: Walter de Gruyter, 2008. DOI:10.1515/9783110208276.
|
26 |
刘宗华, 唐明, 阮中远. 复杂网络上的流行病传播 [M]. 北京: 高等教育出版社, 2021.
|
27 |
WU J T, LEUNG, K, LEUNG G M.. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet, 2020, 395(10225), 689- 697.
|
28 |
LI Q, GUAN X H, WU P, et al.. Early spreading dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. The New England Journal of Medicine, 2020, 382(13), 1199- 1207.
|
29 |
ABBOTT S, HELLEWELL J, MUNDAY J, et al. The transmissibility of novel coronavirus in the early stages of the 2019-20 outbreak in Wuhan: Exploring initial point-source exposure sizes and durations using scenario analysis [EB/OL]. (2020-02-03)[2024-03-05]. https://wellcomeopenresearch.org/articles/5-17/v1.
|
30 |
IMAI N, CORI A, DORIGATTI I, et al. Report 3: Transmissibility of 2019-nCoV[R/OL]. (2020-01-25)2024-03-05]. https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-01-25-COVID19-Report-3.pdf.
|
31 |
World Health Organization(WHO). Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19)[R/OL]. (2020-02-28)[2024-03-05]. https://www.who.int/publications/i/item/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019- (covid-19).
|