华东师范大学学报(自然科学版) ›› 2025, Vol. 2025 ›› Issue (3): 124-136.doi: 10.3969/j.issn.1000-5641.2025.03.015

• 物理学与电子学 • 上一篇    

基于非马尔可夫传播模型和马尔可夫传播模型的流行病预测

吴荐钊, 葛伦, 管曙光*()   

  1. 华东师范大学 物理与电子科学学院, 上海 200241
  • 收稿日期:2024-04-19 出版日期:2025-05-25 发布日期:2025-05-28
  • 通讯作者: 管曙光 E-mail:sgguan@phy.ecnu.edu.cn
  • 基金资助:
    国家自然科学基金(12231012, 11975099)

Epidemic prediction based on non-Markov and Markov spreading models

Jianzhao WU, Lun GE, Shuguang GUAN*()   

  1. School of Physical and Electronic Science, East China Normal University, Shanghai 200241, China
  • Received:2024-04-19 Online:2025-05-25 Published:2025-05-28
  • Contact: Shuguang GUAN E-mail:sgguan@phy.ecnu.edu.cn

摘要:

非马尔可夫传播模型和马尔可夫传播模型是两种常见的传染病传播模型, 二者的本质区别在于传播过程是否依赖历史动力学状态. 尽管有研究揭示了二者在一定条件下可以相互等价, 但对于它们在真实流行病传播中的预测准确性还缺乏足够的认识.基于SHIJR(susceptible, hidden, infected, confirmed, removed)模型, 比较和分析了非马尔可夫传播模型和马尔可夫传播模型对COVID-19(coronavirus disease 2019)疫情态势的预测能力. 假设系统处于均匀混合模式, 可将非马尔可夫模型中状态转变的时间分布转化为马尔可夫模型中的相应转变速率, 进而可以分别模拟出两种模型下的最优传播参数. 模拟结果显示, 非马尔可夫模型模拟出的参数更符合实证结果, 而且短期和长期预测效果更理想. 这一工作填补了这两种传播模型之间预测性比较这一领域的空白, 有助于进一步认识和理解这两种模型的预测能力及适用条件.

关键词: 流行病传播, 非马尔可夫特性, 传播预测模型, 疫情态势

Abstract:

The non-Markov and Markov spreading models are two common infectious disease spreading models. The essential difference between them lies in whether the spreading process depends on the historical dynamic state. Although some studies have revealed that the two can be equivalent under certain conditions, the accuracy of this prediction in an actual epidemic is insufficient. Thus, based on the SHIJR(susceptible, hidden, infected, confirmed, removed) model, this paper compares and analyzes the predictive ability of the non-Markov and Markov spreading models for the COVID-19(coronavirus disease 2019) epidemic situation. Assuming that the system is in a uniform mixing mode, the time distribution of the state transition in the non-Markov model can be converted to the corresponding transition rate in the Markov model. Then, the optimal propagation parameters of the two modes can be simulated respectively. In the simulations that we performed, we found that the parameters simulated by the non-Markov model were more realistic, and both the short-term and long-term prediction effects were better than those for the Markov model. This work fills the gap for predictive comparisons between these two communication models and promotes a greater understanding of their predictive abilities and applicable conditions.

Key words: epidemic spreading, non-Markov property, spreading prediction model, epidemic situation

中图分类号: