1 |
陆拥军.. 码头集装箱锁销自动化拆装技术研究. 港口装卸, 2019, (2): 16- 19.
|
2 |
何继红.. 自动化集装箱码头装卸工艺系统应用现状与展望. 水运工程, 2018, (6): 199- 203.
|
3 |
邹鲁, 赵永新, 王西超, 等.. 基于深度卷积神经网络的集装箱锁销识别研究. 上海电机学院学报, 2019, 22 (4): 193- 197.
|
4 |
汪兆冉, 李保江, 王西超, 等.. 基于深度学习的集装箱锁销识别系统. 机械设计与研究, 2022, 38 (1): 186- 190.
|
5 |
ZHOU R, SUN H, MA K S, et al.. Improving estimation of tree parameters by fusing ALS and TLS point cloud data based on canopy gap shape feature points. Drones, 2023, 7 (8): 524.
|
6 |
TAMATA K, MASHITA T.. Feature description with feature point registration error using local and global point cloud encoders. IEICE Transactions on Information and Systems, 2022, 105 (1): 134- 140.
|
7 |
LIANG Z M, HUANG Y P.. Survey on deep learning-based 3D object detection in autonomous driving. Transactions of the Institute of Measurement and Control, 2023, 45 (4): 761- 776.
|
8 |
VANIAN V, ZAMANAKOS G, PRATIKAKIS I.. Improving performance of deep learning models for 3D point cloud semantic segmentation via attention mechanisms. Computers & Graphics, 2022, 106, 277- 287.
|
9 |
ZHUANG C G, LI S F, DING H.. Instance segmentation based 6D pose estimation of industrial objects using point clouds for robotic Bin-picking. Robotics and Computer-Integrated Manufacturing, 2023, 82, 102541.
|
10 |
HAN X F, SUN S J, SONG X Y, et al. 3D point cloud descriptors in hand-crafted and deep learning age: State-of-the-art [EB/OL]. (2020-07-27)[2023-12-11]. https://arxiv.org/pdf/1802.02297.pdf.
|
11 |
TOMBARI F, SALTI S, DI STEFANO L. Unique signatures of histograms for local surface description [C]// Computer Vision–ECCV 2010. 2010: 356-369.
|
12 |
PRAKHYA S M, LIU B B, LIN W S. B-SHOT: A binary feature descriptor for fast and efficient keypoint matching on 3D point clouds [C]// 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2015: 1929-1934.
|
13 |
RUSU R B, BLODOW N, MARTON Z C, et al. Aligning point cloud views using persistent feature histograms [C]// 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2008: 3384-3391.
|
14 |
CHARLES R Q, HAO S, MO K C, et al. PointNet: Deep learning on point sets for 3D classification and segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 77-85.
|
15 |
QI C R, YI L, SU H, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 5105-5114.
|
16 |
HU H, YU J C, YIN L, et al. An improved PointNet++ point cloud segmentation model applied to automatic measurement method of pig body size [J]. Computers and Electronics in Agriculture, 2023, 205: 107560.
|
17 |
WANG W Y, ZHOU H F, YAN Y X, et al.. An automatic extraction method on medical feature points based on PointNet++ for robot-assisted knee arthroplasty. The International Journal of Medical Robotics and Computer Assisted Surgery, 2023, 19 (1): e2464.
|
18 |
LIU B J, CHEN S X, HUANG H G, et al.. Tree species classification of backpack laser scanning data using the PointNet++point cloud deep learning method. Remote Sens, 2022, 14 (15): 3809.
|
19 |
YAN X, ZHENG C D, LI Z D, et al. PointASNL: Robust point clouds processing using nonlocal neural networks with adaptive sampling [C]// Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition. 2020: 5589-5598.
|
20 |
CHEN G Y, WANG M L, YANG Y, et al. PointGPT: Auto-regressively generative pre-training from point clouds [EB/OL]. (2023-05-23)[2023-12-12]. https://arxiv.org/pdf/2305.11487.pdf.
|