1 |
MAY R M.. How many species are there on earth?. Science, 1988, 241 (4872): 1441- 1449.
|
2 |
CHESSON P.. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 2000, 31, 343- 366.
|
3 |
MAY R M.. Will a large complex system be stable?. Nature, 1972, 238 (5364): 413- 414.
|
4 |
JAMES A, PLANK M J, ROSSBERG A G, et al.. Constructing random matrices to represent real ecosystems. The American Naturalist, 2015, 185 (5): 680- 692.
|
5 |
WINEMILLER K O.. Must connectance decrease with species richness?. The American Naturalist, 1989, 134 (6): 960- 968.
|
6 |
YODZIS P.. The stability of real ecosystems. Nature, 1981, 289, 674- 676.
|
7 |
PIMM S L, LAWTON J H, COHEN J E.. Food web patterns and their consequences. Nature, 1991, 350, 669- 674.
|
8 |
WARREN P H.. Variation in food-web structure: The determinants of connectance. The American Naturalist, 1990, 136 (5): 689- 700.
|
9 |
SCHMID-ARAYA J M, SCHMID P E, ROBERTSON A, et al.. Connectance in stream food webs. Journal of Animal Ecology, 2002, 71 (6): 1056- 1062.
|
10 |
NEUTEL A M, HEESTERBEEK J A P, VAN DE KOPPEL J, et al.. Reconciling complexity with stability in naturally assembling food webs. Nature, 2007, 449 (7162): 599- 602.
|
11 |
JACQUET C, MORITZ C, MORISSETTE L, et al.. No complexity-stability relationship in empirical ecosystems. Nature Communications, 2016, 7, 12573.
|
12 |
MCCANN K S.. The diversity-stability debate. Nature, 2000, 405 (6783): 228- 233.
|
13 |
BASHAN A, GIBSON T E, FRIEDMAN J, et al.. Universality of human microbial dynamics. Nature, 2016, 534 (7606): 259- 262.
|
14 |
YONATAN Y, AMIT G, FRIEDMAN J, et al.. Complexity-stability trade-off in empirical microbial ecosystems. Nature Ecology & Evolution, 2022, (6): 693- 700.
|
15 |
HU J L, AMOR D R, BARBIER M, et al.. Emergent phases of ecological diversity and dynamics mapped in microcosms. Science, 2022, 378 (6615): 85- 89.
|
16 |
RATZKE C, BARRERE J, GORE J.. Strength of species interactions determines biodiversity and stability in microbial communities. Nature Ecology & Evolution, 2020, 4 (3): 376- 383.
|
17 |
GOYAL A.. How diverse ecosystems remain stable. Nature Ecology & Evolution, 2022, 6 (6): 667- 668.
|
18 |
NANNIPIERI P, ASCHER J, CECCHERINI M T, et al.. Microbial diversity and soil functions. European Journal of Soil Science, 2017, 68 (1): 12- 26.
|
19 |
贺纪正, 李晶, 郑袁明.. 土壤生态系统微生物多样性−稳定性关系的思考. 生物多样性, 2013, 21 (4): 412- 421.
|
20 |
HE J Z, GE Y, XU Z H, et al.. Linking soil bacterial diversity to ecosystem multifunctionality using backward-elimination boosted trees analysis. Journal of Soils and Sediments, 2009, 9 (6): 547- 554.
|
21 |
WITTEBOLLE L, MARZORATI M, CLEMENT L, et al.. Initial community evenness favours functionality under selective stress. Nature, 2009, 458 (7238): 623- 626.
|
22 |
FAUST K, RAES J.. Microbial interactions: From networks to models. Nature Reviews Microbiology, 2012, 10 (8): 538- 550.
|
23 |
HUANG L B, BAI J H, WEN X J, et al.. Microbial resistance and resilience in response to environmental changes under the higher intensity of human activities than global average level. Global Change Biology, 2020, 26 (4): 2377- 2389.
|
24 |
BARDGETT R D, CARUSO T.. Soil microbial community responses to climate extremes: Resistance, resilience and transitions to alternative states. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2020, 375 (1794): 20190112.
|
25 |
STEELE J A, COUNTWAY P D, XIA L, et al.. Marine bacterial, archaeal and protistan association networks reveal ecological linkages. The ISME Journal, 2011, 5 (9): 1414- 1425.
|
26 |
PHILIPPOT L, GRIFFITHS B S, LANGENHEDER S.. Microbial community resilience across ecosystems and multiple disturbances. Microbiology and Molecular Biology Reviews, 2021, 85 (2): e00026- 20.
|
27 |
TOJU H, YAMAMICHI M, GUIMARÃES P R JR, et al.. Species-rich networks and eco-evolutionary synthesis at the metacommunity level. Nature Ecology & Evolution, 2017, 1 (2): 24.
|
28 |
ULLAH H, NAGELKERKEN I, GOLDENBERG S U, et al.. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biology, 2018, 16 (1): e2003446.
|
29 |
宋永昌, 王祥荣. 浙江天童国家森林公园的植被和区系 [M]. 上海: 上海科学技术文献出版社, 1995.
|
30 |
杨庆松, 马遵平, 谢玉彬, 等.. 浙江天童20ha常绿阔叶林动态监测样地的群落特征. 生物多样性, 2011, 19 (2): 215- 223.
|
31 |
JOHN R, DALLING J W, HARMS K E, et al.. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104 (3): 864- 869.
|
32 |
XING H, JIAO S, WU X, et al.. Proportion of mycorrhiza-associated trees mediates community assemblages of soil fungi but not of bacteria. Fungal Ecology, 2023, 64, 101251.
|
33 |
王少鹏, 罗明宇, 冯彦皓, 等.. 生物多样性理论最新进展. 生物多样性, 2022, 30 (10): 25- 37.
|
34 |
THIBAUT L M, CONNOLLY S R.. Understanding diversity–stability relationships: Towards a unified model of portfolio effects. Ecology Letters, 2013, 16 (2): 140- 150.
|
35 |
GARDNER M R, ASHBY W R.. Connectance of large dynamic (cybernetic) systems: Critical values for stability. Nature, 1970, 228 (5273): 784.
|
36 |
DUNNE J A, BROSE U, WILLIAMS R J, et al. Modeling food-web dynamics: Complexity-stability implications [M]//BELGRANO A. Aquatic Food Webs. Oxford: Oxford University Press, 2005: 117-129.
|
37 |
徐光华, 李小玉, 施春华.. 复杂性–稳定性研究: 数学模型的进展. 生物多样性, 2019, 27 (12): 1364- 1378.
|
38 |
ELTON C S. The ecology of invasions by animals and plants [M]. 2nd ed. Switzerland: Springer Cham, 2020.
|
39 |
何芳良.. 生态系统的复杂性与稳定性. 生态学进展, 1988, 5 (3): 157- 162.
|