1 |
GE Y Q, HUA W Y, MEI K, et al.. OpenAGI: When LLM meets domain experts. Advances in Neural Information Processing Systems, 2023, 36, 5539- 5568.
|
2 |
UMER F, BATOOL I, NAVED N.. Innovation and application of large language models (LLMs) in dentistry–a scoping review. BDJ Open, 2024, 10, 90.
|
3 |
WEBER I. Large language models as software components: A taxonomy for LLM-integrated applications [EB/OL]. (2024-06-13)[2025-06-05]. https://arxiv.org/abs/2406.10300.
|
4 |
MTAHO A B, MSELLE L J.. Difficulties in learning the data structures course: Literature review. The Journal of Informatics, 2024, 4 (1): 26- 55.
|
5 |
SU S, ZHANG E, DENNY P, et al. A game-based approach for teaching algorithms and data structures using visualizations [C]// Proceedings of the 52nd ACM Technical Symposium on Computer Science Education. ACM, 2021: 1128-1134.
|
6 |
ZINGARO D, TAYLOR C, PORTER L, et al. Identifying student difficulties with basic data structures [C]// Proceedings of the 2018 ACM Conference on International Computing Education Research. ACM, 2018: 169-177.
|
7 |
CHEN E, HUANG R, CHEN H S, et al. GPTutor: A ChatGPT-powered programming tool for code explanation [C]// Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners, Doctoral Consortium and Blue Sky. AIED 2023. Communications in Computer and Information Science, vol 1831. Cham: Springer, 2023: 321-327.
|
8 |
JAMIE P, HAJIHASHEMI R, ALIPOUR S. Utilizing ChatGPT in a data structures and algorithms course: A teaching assistant’s perspective [EB/OL]. (2025-03-02)[2025-06-05]. https://arxiv.org/abs/2410.08899.
|
9 |
YAO S Y, ZHAO J, YU D, et al. ReAct: Synergizing reasoning and acting in language models [EB/OL]. (2023-03-10)[2025-06-05]. https://arxiv.org/abs/2210.03629.
|
10 |
MU F W, SHI L, WANG S, et al.. ClarifyGPT: A framework for enhancing LLM-based code generation via requirements clarification. Proceedings of the ACM on Software Engineering, 2024, 1 (FSE): 2332- 2354.
|
11 |
GU Q H. LLM-based code generation method for golang compiler testing [C]// Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. ACM, 2023: 2201-2203.
|
12 |
DU X Y, LIU M W, WANG K X, et al. Evaluating large language models in class-level code generation [C]// Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. IEEE, 2024: 982-994.
|
13 |
ZHAO X L, LUO X Z, SHI Q, et al. ChartCoder: Advancing multimodal large language model for Chart-to-Code generation [C]// Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). ACL, 2025: 7333–7348.
|
14 |
XIAO J Y, WAN Y X, HUO Y T, et al. Interaction2Code: How far are we from automatic interactive webpage generation? [EB/OL]. (2024-11-05)[2025-06-05]. https://arxiv.org/html/2411.03292v1.
|
15 |
JI H N, QIU S, XIN S Y, et al. From EduVisBench to EduVisAgent: A benchmark and multi-Agent framework for pedagogical visualization [EB/OL]. (2025-03-27)[2025-06-05]. https://arxiv.org/abs/2505.16832.
|
16 |
LIU Z J, ZHANG Y Z, LI P, et al. Dynamic LLM-agent network: An LLM-agent collaboration framework with agent team optimization [EB/OL]. (2024-02-11)[2025-06-05]. https://openreview.net/forum?id=i43XCU54Br.
|
17 |
ZHAO A, HUANG D, XU Q, et al. Expel: LLM agents are experiential learners [C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2024, 38(17): 19632-19642.
|
18 |
SHAO Y F, LI L Y, DAI J Q, et al. Character-LLM: A trainable agent for role-playing [EB/OL]. (2023-11-14)[2025-06-05]. https://arxiv.org/abs/2310.10158.
|
19 |
LI Y, ZHANG Y X, SUN L C. MetaAgents: Simulating interactions of human behaviors for LLM-based task-oriented coordination via collaborative generative agents [J]. (2023-10-10)[2025-06-05]. https://arxiv.org/abs/2310.06500.
|
20 |
TANG H, KEY D, ELLIS K. WorldCoder, a model-based LLM agent: Building world models by writing code and interacting with the environment [C]// Proceedings of the 38th International Conference on Neural Information Processing System . Red Hook, NY, USA: Curran Associates Inc., 2024: 70148-70212.
|
21 |
WEI J, WANG X Z, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models [C]// Proceedings of the 36th International Conference on Neural Information Processing System. Red Hook, NY, USA: Curran Associates Inc., 2022: 24824-24837.
|
22 |
HUI B Y, YANG J, CUI Z Y, et al. Qwen2.5-Coder technical report [EB/OL]. (2024-11-12)[2025-06-05]. https://arxiv.org/abs/2409.12186.
|
23 |
GUO D Y, ZHU Q H, YANG D J, et al. DeepSeek-Coder: When the large language model meets programming-The rise of code intelligence [EB/OL]. (2024-01-26)[2025-06-05]. https://arxiv.org/abs/2401.14196.
|
24 |
GUO D Y, YANG D J, ZHANG H W, et al. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning [EB/OL]. (2025-01-22)[2025-06-05]. https://arxiv.org/abs/2501.12948.
|
25 |
BALOG M, GAUNT A L, BROCKSCHMIDT M, et al. DeepCoder: Learning to write programs [EB/OL]. (2017-03-08)[2025-06-05]. https://arxiv.org/abs/1611.01989.
|
26 |
CHEN M, TWOREK J, JUN H, et al. Evaluating large language models trained on code [EB/OL]. (2021-07-14)[2025-06-05]. https://arxiv.org/abs/2107.03374.
|