1 |
DHANYA D, KUMAR S S, THILAGAVATHY A, et al. Data analytics and artificial intelligence in the circular economy: Case studies [M]// MISHRA B K. Intelligent Engineering Applications and Applied Sciences for Sustainability. Hershey: IGI Global, 2023: 40-58.
|
2 |
AWAN U, SHAMIM S, KHAN Z, et al.. Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance. Technological Forecasting and Social Change, 2021, 168, 120766.
|
3 |
COLSO E. What AI-driven decision making looks like [EB/OL]. (2019-07-08)[2025-05-31]. https://hbr.org/2019/07/what-ai-driven-decision-making-looks-like.
|
4 |
BEAN R. Why becoming a data-driven organization is so hard [EB/OL]. (2022-02-24)[2025-05-31]. https://hbr.org/2022/02/why-becoming-a-data-driven-organization-is-so-hard.
|
5 |
TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: Open and efficient foundation language models [EB/OL]. (2023-02-27)[2025-05-31]. https://arxiv.org/abs/2302.13971.
|
6 |
ACHAIM J, ADLER S, AGARWAL S, et al. GPT-4 technical report [EB/OL]. (2023-03-15)[2025-05-31]. https://arxiv.org/abs/2303.08774v1.
|
7 |
陈郅睿,陆雪松.. 基于开源代码大语言模型提示的学生代码修复. 华东师范大学学报(自然科学版), 2024, (5): 93- 103.
|
8 |
QIAO B, LI L Q, ZHANG X, et al. Taskweaver: A code-first agent framework [EB/OL]. (2024-06-20)[2025-05-31]. https://arxiv.org/abs/2311.17541v3.
|
9 |
HONG S, LIN Y, LIU B, et al. Data interpreter: An LLM agent for data science [EB/OL]. (2024-02-28)[2025-05-31]. https://arxiv.org/abs/2402.18679v4.
|
10 |
MA P C, DING R, WANG S, et al. InsightPilot: An LLM-empowered automated data exploration system [C]// Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. 2023: 346-352.
|
11 |
WENG L X, WANG X B, LU J Y, et al. InsightLens: Discovering and exploring insights from conversational contexts in large-language-model-powered data analysis [EB/OL]. (2024-04-02)[2025-05-31]. https://arxiv.org/abs/2404.01644v1.
|
12 |
LIU X, WU Z R, WU X Q, et al. Are LLMs capable of data-based statistical and causal reasoning? Benchmarking advanced quantitative reasoning with data [C]// Findings of the Association for Computational Linguistics: ACL 2024. 2024: 9215–9235.
|
13 |
HE X Y, ZHOU M Y, XU X R, et al.. Text2Analysis: A benchmark of table question answering with advanced data analysis and unclear queries. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38 (16): 18206- 18215.
|
14 |
HU X Y, ZHAO Z Y, WEI S, et al. InfiAgent-DABench: Evaluating agents on data analysis tasks [C]// Proceedings of the 41st International Conference on Machine Learning. 2024: 19544–19572.
|
15 |
SAHU G, PURI A, RODRIGUEZ J, et al. InsightBench: Evaluating business analytics agents through multi-step insight generation [EB/OL]. (2024-04-02)[2025-05-31]. https://arxiv.org/abs/2407.06423v1.
|
16 |
ZHANG D, ZHOUBIAN S N, CAI M, et al. DataSciBench: An LLM agent benchmark for data science [EB/OL]. (2025-02-19)[2025-05-31]. https://arxiv.org/abs/2502.13897.
|
17 |
JING L, HUANG Z, WANG X, et al. Dsbench: How far are data science agents to becoming data science experts? [EB/OL]. (2024-09-12)[2025-05-31]. https://arxiv.org/abs/2409.07703v1.
|
18 |
SIMON H A, NEWELL A.. Human problem solving: The state of the theory in 1970. American psychologist, 1971, 26 (2): 145- 159.
|
19 |
SILBERZAHN R, UHLMANN E L, MARTIN D P, et al.. Many analysts, one data set: Making transparent how variations in analytic choices affect results. Advances in Methods and Practices in Psychological Science, 2018, (3): 337- 356.
|
20 |
GU K, SHANG R X, JIANG R E, et al. BLADE: Benchmarking language model agents for data-driven science [C]// Findings of the Association for Computational Linguistics: EMNLP 2024. 2024: 13936–13971.
|
21 |
LIN C Y. Rouge: A package for automatic evaluation of summaries [C]// Text Summarization Branches Out. 2004: 74-81.
|
22 |
BANERJEE S, LAVIE A. METEOR: An automatic metric for mt evaluation with improved correlation with human judgments [C]// Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization. 2005: 65-72.
|
23 |
LIU Y, ITER D, XU Y C, et al. G-eval: NLG evaluation using GPT-4 with better human alignment [C]// Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. 2023: 2511–2522.
|
24 |
WU Q Y, BANSAL G, ZHANG J Y, et al. AutoGen: Enabling next-gen LLM applications via multi-agent conversation [EB/OL]. (2023-08-16)[2025-05-31]. https://arxiv.org/abs/2308.08155.
|
25 |
ZHOU X H, SUN Z Y, LI G L.. DB-GPT: Large language model meets database. Data Science and Engineering, 2024, 9 (1): 102- 111.
|