华东师范大学学报(自然科学版) ›› 2025, Vol. 2025 ›› Issue (6): 1-13.doi: 10.3969/j.issn.1000-5641.2025.06.001

• •    

由截尾α-稳定过程驱动的种群系统的遍历性

张振中1(), 顾笑凡1, 童俊波2, 赵馨1, 李新平3   

  1. 1. 东华大学 数学与统计学院, 上海 201620
    2. 娄底市第一中学, 湖南 娄底 417000
    3. 湖南理工学院 数学学院, 湖南 岳阳 414006
  • 收稿日期:2024-03-11 出版日期:2025-11-25 发布日期:2025-11-29
  • 作者简介:张振中, 男, 教授, 研究方向为受控的混杂跳扩散系统及应用. E-mail: zzzhang@dhu.edu.cn
  • 基金资助:
    上海市自然科学基金(23ZR1402600); 上海市启明星计划扬帆专项 (22YF1400900); 东华大学虚拟仿真实验教学项目

The ergodicity of population dynamics driven by truncated α-stable processes

Zhenzhong ZHANG1(), Xiaofan GU1, Junbo TONG2, Xin ZHAO1, Xinping LI3   

  1. 1. School of Mathematics and Statistics, Donghua University, Shanghai 201620, China
    2. Number One Middle School of Loudi, Loudi, Hunan 417000, China
    3. School of Mathematics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
  • Received:2024-03-11 Online:2025-11-25 Published:2025-11-29

摘要:

为了研究生物种群在复杂环境中的动态行为, 考虑了一个由截尾α-稳定过程驱动的$n$维种群模型. 首先, 建立了一个纯跳情形下的Khasminskii 判别定理; 其次, 讨论了该系统的正则点; 最后, 给出了此类纯跳系统遍历性的一个判别准则.

关键词: 平稳分布, 正则点, 截尾α-稳定过程

Abstract:

In order to study the dynamic behavior of biological populations in complex environments, we consider an n-dimensional population model driven by a truncated α-stable process. First of all, a generalized Khasminskii theorem for pure jump systems has been established. Then, the regular points such a system are discussed. Finally, we give a sufficient criterion to verify ergodicity for such a pure jump population dynamic system.

Key words: stationary distribution, regular point, truncated α-stable processes

中图分类号: