华东师范大学学报(自然科学版) ›› 2004, Vol. 2004 ›› Issue (3): 29-35.

• 物理 电子科学技术 • 上一篇    下一篇

复Ginzburg-Landau方程在三维空间上的惯性分形集(英)

李栋龙1, 郭柏灵2

  

  1. 1. 广西工学院,柳州 545006; 2. 北京应用物理与计算数学研究所,北京 100088
  • 收稿日期:2002-09-10 修回日期:2003-10-18 出版日期:2004-09-25 发布日期:2004-09-25
  • 通讯作者: 李栋龙

Inertial Fractal Set for Complex Ginzburg-Landau Equation in Three-dimension

LI Dong-long1, GUO Bo-ling2   

  1. 1. Guangxi Institute of Technology, Liuzhou 545006, China; 2. Institute of Applied Physic and Computational Mathematics, Beijing 100088, China
  • Received:2002-09-10 Revised:2003-10-18 Online:2004-09-25 Published:2004-09-25
  • Contact: LI Dong-long

摘要: 在三维空间中考虑带高阶非线性项的复Ginzburg-Landau方程.通过证明Ginzburg-Landau方程的初边值问题的解半群S(t)的Lipschizt连续性和强挤压性,从而获得复Ginzburg-Landau方程惯性分形集存在性.

关键词: 复Ginzburg-Landau方程, Lipschizt连续性, 强挤压性, 惯性分形集, 复Ginzburg-Landau方程, Lipschizt连续性, 强挤压性, 惯性分形集

Abstract: This paper considers the complex Ginzburg-Landau equation in three spatial dimensions. The Lipschitz continuity and the squeezing property of the semigroup S(t) associated with the initial-value problem of complex Ginzburg-Landau equation are proved. Therefore the existence of inertial fractal sets is obtained.

Key words: Lipschitz continuity, squeezing property, fractal sets, complex Ginzburg-Landau equation, Lipschitz continuity, squeezing property, fractal sets

中图分类号: