NIU Cheng-hu, ZHOU Sheng-wu. Numerical solution of a non-arbitrage liquidity model based on uncertain volatility[J]. Journal of East China Normal University(Natural Sc, 2012, 2012(1): 121-129, 137.
BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J].
Political Economy, 1973, 81: 637-659. {2} BALLESTER C, COMPANY R, J\'{O}DAR L, et al. Numerical analysis and simulation of
option pricing problems modeling illiquid markets[J]. Computers and Mathematics with Applications, 2010, 59(8): 2964-2975. {3} LIU H, YONG J. Option pricing with an illiquid underlying
asset market[J]. Journal of Economic Dynamics and Control, 2005, 29:
2125-2156. {4} COMPANY R, J\'{O}DAR L, PINTOS J R. Numerical analysis and
computing for option pricing models in illiquid markets[J].
Mathematical and Computer Modelling, 2010, 52: 1066-1073. {5}BAKSTEIN D, HOWISON S. An arbitrage-free liquidity model with
observable parameters for derivatives[R]. Working paper,
Mathematical Institute, Oxford University, 2004. {6}HOWISON S. Matched asymptotic expansions in financial
engineering[J]. Journal of Engineering Mathematics Computers, 2005,
53: 385-406. {7}CASAB\'{A}N M C, COMPANY R, J\'{O}DAR L, et al. Numerical
analysis and computing of a non-arbitrage liquidity model with
observable parameters for derivatives[J]. Computers and Mathematics
with Applications. 2010, doi:10.1016/j. camwa. 2010.08.009. {8}BARLES G, SONER H M. Option pricing with transaction costs and
a nonlinear Black-Scholes equation[J]. Finance Stoch, 1998, 2:
369-397. {9} COMPANY R, NAVARRO R, PINTOS J R, et al. Numerical solution of
linear and nonlinear Black-Scholes option pricing equations[J].
Computers and Mathematics with Applications, 2008, 56: 813-821.
{10} COMPANY R, J\'{A}DAR L, PONSODAR E. Numerical solution of
Black-Scholes option pricing with variable yield discrete dividend
payment[J]. Banach Center Publ, 2008, 83: 37-47. {11} COMPANY R, J\'{O}DAR L, PINTOS J R. A numerical method for
european option pricing with transaction costs nonlinear
equation[J]. Mathematical and Computer Modelling, 2009, 50: 910-920. {12} COMPANY R, J\'{O}DAR L, PINTOS J R, et al. Computing option
pricing models under transaction costs[J]. Computers and Mathematics
with Applications, 2010, 59: 651-662. {13} JANDA\v{C}KA M, \v{S}EV\v{C}OVI\v{C} D. On the risk-adjusted
pricing-methodology-based valuation of vanilla options and
explanation of the volatility smile[J]. J Appl Math, 2005(3):