Lower semicontinuity to parametric lexicographic vector equilibrium problems
FANG Zhi-miao 1, ZHANG Yu 2, CHEN Tao 3
1. Department of Basic Courses, Chongqing Police College, Chongqing 401331, China;
2. College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China;
3. Open Education Institute, Yunnan Radio and TV University, Kunming 650223, China
FANG Zhi-miao, ZHANG Yu, CHEN Tao. Lower semicontinuity to parametric lexicographic vector equilibrium problems[J]. Journal of East China Normal University(Natural Sc, 2013, 2013(2): 131-135, 145.
{1}ANH L Q, KHANH P Q. Semicontinuity of the solution set of parametricmultivalued vector quasiequalibrium problems[J]. Journal ofMathematical Analysis and Applications, 2004, 294: 699-711.{2}CHEN C R, LI S J. On the solution continuity of parametricgeneralized systems[J]. Pacific Journal of Optimization, 2010, 6:141-151.{3}CHEN C R, LI S J, TEO K L. Solution semicontinuity of parametricgeneralized vector equilibrium problems[J]. Journal of GlobalOptimization, 2009, 45: 309-318.{4}ANH L Q, KHANH P Q. Continuity of solution maps of parametricquasiequilibrium problems[J]. Journal of Global Optimization, 2010,46: 247-259.{5}BIANCHI M, KONNOV I V, PINI R. Lexicographic and sequentialequilibrium problems[J]. Journal of Global Optimization, 2010, 46:551-560.{6}BIANCHI M, KONNOV I V, PINI R. Lexicographic variationalinequalities with applications[J]. Optimization, 2006, 56: 355-367.{7}ANH L Q, KHANH P Q. Semicontinuity of solution sets to parametricquasivariational inclusions with applications to traffic networks I:uper semicontinuities[J]. Set-Valued Analysis, 2008, 16: 267-279.{8}LI S J, FANG Z M. Lower semicontinuity of the solution mappings to aparametric generalized Ky Fan inequality[J]. Journal of OptimizationTheory and Applications, 2010, 147: 507-515.{9}GONG X H, YAO J C. Lower semicontinuity of the set of efficientsolutions for generalized systems[J]. Journal of Optimization Theoryand Applications, 2008, 138: 197-205.{10}AUBIN J P, EKELAND I. Applied Nonlinear Analysis[M]. New York:Wiley, 1984.{11}FERRO F. A minimax theorem for vector-valued functions[J]. Journalof Optimization Theory and Applications, 1989, 60: 19-31.