华东师范大学学报(自然科学版) ›› 2013, Vol. 2013 ›› Issue (3): 164-168,175.

• 应用数学与基础数学 • 上一篇    下一篇

定义在三个拟互素因子链上的倒数幂矩阵的非奇异性

罗 淼, 谭千蓉   

  1. 攀枝花学院~数学与计算机学院, 四川 攀枝花 617000
  • 收稿日期:2012-06-01 修回日期:2012-09-01 出版日期:2013-05-25 发布日期:2013-07-10

Nonsingularity of the reciprocal power matrices on three quasi-coprime divisor chains

LUO Miao, TAN Qian-rong   

  1. School of Mathematics and Computer Science, Panzhihua University, Panzhihua Sichuan 617000, China
  • Received:2012-06-01 Revised:2012-09-01 Online:2013-05-25 Published:2013-07-10

摘要: 首先给出定义在三个拟互素因子链上的倒数幂~GCD~矩阵和倒数幂~LCM
矩阵的行列式的计算公式, 由此证明定义在三个拟互素因子链~$S$~上且~$S$
的最大公因子属于~$S$~时的倒数幂~GCD~矩阵和倒数幂~LCM~矩阵是非奇异的.
但当构成~$S$~的三个因子链不素时, 如此的结果不成立.

关键词: 三个拟互素因子链, 最大型因子, 倒数幂~GCD~矩阵, 倒数幂~LCM~矩阵

Abstract: The authors first obtained formulae for the determinants of
reciprocal power GCD matrix and reciprocal power LCM matrix defined
on a set $S$ consisting of three quasi-coprime divisor chains with
$\gcd (S)\in S$. Consequently, it was showed that the reciprocal
power GCD matrix and the reciprocal power LCM matrix defined on $S$
with $\gcd (S)\in S$ are nonsingular. But such result is not true
when $S$ consists of three divisor chains which are not
quasi-coprime.

Key words: three quasi-coprime divisor chains, greatest-type divisor, reciprocal power GCD matrix, reciprocal power LCM matrix

中图分类号: