Determining the topology of real intersection of algebraic surfaces
GAO Ben1, CHEN Yu-fu2
1. College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China;
2. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
GAO Ben, CHEN Yu-fu. Determining the topology of real intersection of algebraic surfaces[J]. Journal of East China Normal University(Natural Sc, 2014, 2014(1): 36-46.
{1}BAJAJ C, HOFFMANN C M. Tracing surfaces intersection[J]. Comput Aided Geom Design, 1988(5): 285-307.{2}KEYSER J, CULVER T, MANOCHA D, et al. Efficient and exact manipulation of algebraic points and curves[J]. Comput Aided Geom Design, 2000(32): 649-662.{3} KEYSER J, CULVER T, MANOCHA D, et al. A library for efficient and exact manipulation of algebraic points and curves[C]//Proc 15th Annu ACM Sympos Comput Geom, 1999: 360-369.{4}SHARIR M. Arrangements and Their Applications[M]//SACK J. Handbook of Computational Geometry. North Holland: Elsevier, 2000: 49-119.{5}HALPERIN D, SHARIR M. Arrangements and Their Applications in Robotics: Recent Developments[C]//Proceedings of the Workshop on Algorithmic Foundations of Robotics. 1995: 495-511.{6}GONZALEZ-VEGA L, NECULA I. Efficient topology determination of implicitly defined algebraic plane curves[J]. Comput Aided Geom Design, 2002, 19(9): 719-743.{7}ALCAZ{A}R J G, SENDRA J R. Computation of the topology of algebraic space curves[J]. J Symbolic Comput, 2005,39(6): 719-744.{8} DAOUDA N D, BERNARD M, OLIVIER R. On the computation of the topology of a non-reduced implicit space curve[C]//Proceedings of the 21st International Symposium On Symbolic and Alyebraic Computation. New York: ACM, 2008: 47-54.{9} SHEN L Y, CHENG J S, JIA X H, Homeomorphic approximation of the intersection curve of two rational surfaces[J]. Computer Aided Goemetric Design, 2012, 29(8): 613-625.{10} BASU S, POLLACK R, ROY M F. Algorithms in real algebraic geometry [M]//Algorithms and Computation in Mathematics 10. Berlin: Springer-Verlag, 2003.{11}CHEN Y F. Lectures on Computer Algebra[M]. Beijing: Higher Education Press, 2009.{12}WOLPERT N. An Exact and Efficient Approach for Computing a Cell in an Arrangement of Quadrics[D]. Saarbr"ucken: Universit"ades Saarlandes 2002.{13}SCHOMER E, WOLPERT N. An exact and efficient approach for computing a cell in an arrangement of quadrics[J]. Computational Geometry: Theory and Applications, 2006, 33(1-2): 65-97.{14}COX D, LITTLE J, O'SHEA D. Ideals,Varieties,and Algorithms[M]. Berlin: Springer-Verlag. 2004.{15}COLLINS G E. Quantifier elimination for real closed fields by cylindrical algebraic decomposition[J]. Automata Theory and Formal Languages, 1975(33): 134-183.{16}ARNON D S, COLLINS G E, MCCALLUM S. Cylindrical algebraic decomposition I: The basic algorithm[J]. SIAM J Comput, 1984, 13(4): 865-877.{17} RUPPRECHT D. An algorithm for computing certified approximate GCD of n univariate polynomials[J]. J Pure Appl Algebra, 1999, 139: 255-284.