[1] FRISH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Wallingford, CT:Gaussian Inc, 2009.
[2] VAN DAM H J J, DE JONG W A, BYLASKA E, et al. NWChem:Scalable parallel computational chemistry[J]. Wiley Interdisciplinary Reviews Computational Molecular Science, 2011, 1(6):888-894.
[3] KRYLOV A I, GILL P M W. Q-Chem:An engine for innovation[J]. Wiley Interdisciplinary Reviews Computational Molecular Science, 2013, 3(3):317-326.
[4] WERNER H J, KNOWLES P J, KNIZIA G, et al. Molpro:A general-purpose quantum chemistry program package[J]. Wiley Interdisciplinary Reviews Computational Molecular Science, 2012, 2(2):242-253.
[5] JANSSEN C L, NIELSEN I M B, LEININGER M L, et al. The Massively Parallel Quantum Chemistry Program (MPQC), Version 3.0[CP]. Livermore, CA, USA:Sandia National Laboratories, 2008.
[6] DEUMENS E, LOTRICH V F, PERERA A, et al. Software design of ACES Ⅲ with the super instruction architecture[J]. Wiley Interdisciplinary Reviews Computational Molecular Science, 2011, 1(6):895-901.
[7] SCHMIDT M W, BALDRIDGE K K, BOATZ J A, et al. General atomic and molecular electronic structure system[J]. Journal of Computational Chemistry, 1993, 14(11):1347-1363.
[8] GUEST M F, BUSH I J, VAN DAM H J J, et al. The GAMESS-UK electronic structure package:Algorithms, developments and applications[J]. Molecular Physics, 2005, 103(6-8), 719-747.
[9] TURNEY J M, SIMMONETT A C, PARRISH R M. Psi4:An open-source ab initio electronic structure program[J]. Wiley Interdisciplinary Reviews Computational Molecular Science, 2013, 2(4):556-565.
[10] AIDAS K, ANGELI C, BAK K L, et al. The Dalton quantum chemistry program system[J]. Wiley Interdisciplinary Reviews Computational Molecular Science, 2014, 4(3):269-284.
[11] FURCHE F, AHLRICHS R, HÄTTIG C, et al. Turbomole[J]. Wiley Interdisciplinary Reviews Computational Molecular Science, 2014, 4(2):91-100.
[12] AQUILANTE F, PEDERSEN T B, VERYAZOV V, et al. MOLCAS-a software for multiconfigurational quantum chemistry calculations[J]. Wiley Interdisciplinary Reviews Computational Molecular Science, 2013, 3(2):143-149.
[13] BAKER J, JANOWSKI T, WOLINSKI K, et al. Recent developments in the PQS program[J]. Wiley Interdisciplinary Reviews Computational Molecular Science, 2012, 2(1):63-72.
[14] NEESE F. The ORCA program system[J]. Wiley Interdisciplinary Reviews Computational Molecular Science, 2012, 2(1):73-78.
[15] LISCHKA H, MÜLLER T, SZALAY P G, et al. COLUMBUS-a program system for advanced multireference theory calculations[J]. Wiley Interdisciplinary Reviews Computational Molecular Science, 2011, 1(2):191-199.
[16] ALMLOF J, FAEGRI K, KORSELL K. Principles for a direct SCF approach to LICAO-MO ab-initio calculations[J]. Journal of Computational Chemistry, 1982, 3(3):385-399.
[17] VAHTRAS O, ALMLOF J, FEYEREISEN M. Integral approximations for LCAO-SCF calculations[J]. Chemical Physics Letters, 1993, 213(5):514-518.
[18] PULAY P, SAEBO S. Orbital-invariant formulation and 2nd-order gradient evaluation in moller-plesset perturbation-theory[J]. Theoretica Chimica Acta, 1986, 69(5):357-368.
[19] MCEACHRA R P, TULL C E, COHEN M. mFrozen core approximation for atoms and atomic ions[J]. Canadian Journal of Physics, 1968, 46(23):2675-2678.
[20] SEEGER R. Parallel processing on minicomputers:A powerful tool for quantum chemistry[J]. Journal of Computational Chemistry, 1981, 2(2):168-176.
[21] HARVEY M J, FABRITⅡS G. A survey of computational molecular science using graphics processing units[J]. Wiley Interdisciplinary Reviews Computational Molecular Science, 2012, 2(5):734-742.
[22] LEANG S S, RENDELL A P, GORDON M S. Quantum chemical calculations using accelerators:Migrating matrix operations to the NVIDIA kepler GPU and the intel xeon phi[J]. Journal of Chemical Theory and Computation, 2014, 10(3):908-912.
[23] FISCHER C F. The Hartree-Fock Method for Atoms[M]. New York:John Wiley and Sons Ltd, 1977.
[24] PARR R G, YANG W T. Density-Functional Theory of Atoms and Molecules[M]. New York:Oxford University Press, 1989.
[25] SHERRILL C D, SCHAEFER Ⅲ H F. The configurationinteraction method:Advances in highly correlated approaches[J]. Advances in Quantum Chemistry, 1999, 34:143-269.
[26] SHAVITT I, BARTLETT R J. Many-Body Methods in Chemistry and Physics:MBPT and Coupled-Cluster Theory[M]. Cambridge:Cambridge University Press, 2009.
[27] GOEDECKER S. Linear scaling electronic structure methods[J]. Reviews of Modern Physics, 1999, 71(4):1085-1123.
[28] KUSSMANN J, BEER M, OCHSENFELD C. Linear-scaling self-consistent field methods for large molecules[J]. Wiley Interdisciplinary Reviews Computational Molecular Science, 2014, 3(6):614-636.
[29] CHALLACOMBE M, SCHWEGLER E. Linear scaling computation of the Fock matrix[J]. The Journal of Chemical Physics, 1997, 106(13):5526-5536.
[30] NIELSEN I M B, JANSSEN C L. Local møller-plesset perturbation theory:A massively parallel algorithm[J]. Journal of Chemical Theory and Computation, 2007, 3(1):71-79.
[31] FLOCKE N, BARTLETT R J. A natural linear scaling coupled-cluster method[J]. The Journal of Chemical Physics, 2004, 121(22):10935-10944.
[32] BOWLER D R, CHOUDHURY R, GILLAN M J, et al. Recent progress with large-scale ab initio calculations:the CONQUEST code[J]. Physica Status Solidi (b), 2006, 243(5):989-1000.
[33] JENSEN F. Introduction to Computational Chemistry[M]. Chichester:John Wiley & Sons Ltd, 1999.
[34] MARTIN R M. Electronic Structure:Basic Theory and Practical Methods[M]. Cambridge:Cambridge University Press, 2004.
[35] GILL P M W. Molecular integrals over gaussian basis functions[J]. Advances in Quantum Chemistry, 1994, 25:141-205.
[36] HÄSER M, AHLRICHS R. Improvements on the direct SCF method[J]. Journal of Computational Chemistry, 1989, 10(1):104-111.
[37] PEDERSEN T B, AQUILANTE F, LINDH R. Density fitting with auxiliary basis sets from Cholesky decompositions[J]. Theoretical Chemistry Accounts, 2009, 124(1-2):1-10.
[38] DUNLAP B I, CONNOLLY J W D, SABIN J R. On some approximations in applications of Xα theory[J]. The Journal of Chemical Physics, 1979, 71(8):3396-3402.
[39] RENDELL A P. Diagonalization-free SCF[J]. Chemical Physics Letters, 1994, 229(3):204-210.
[40] FURLANI T R, KONG J, GILL P M W. Parallelization of SCF calculations within Q-Chem[J]. Computer Physics Communications, 2000, 128(1-2):170-177.
[41] JANSSEN C L, NIELSEN I M B. Parallel Computing in Quantum Chemistry[M]. FL:CRC Press, Taylor & Francis Group, Boca Raton, 2008.
[42] FOSTER I T, TILSON J L, WAGNER A F, et al. Toward high-performance computational chemistry:I. Scalable Fock matrix construction algorithms[J]. Journal of Computational Chemistry, 1996, 17(1):109-123.
[43] FURLANI T R, KING H F. Implementation of a parallel direct SCF algorithm on distributed memory computers[J]. Journal of Computational Chemistry, 1995, 16(1):91-104.
[44] ALEXEEV Y, SCHMIDT M W, WINDUS T L, et al. A parallel distributed data CPHF algorithm for analytic Hessians[J]. Journal of Computational Chemistry, 2007, 28(10):1685-1694.
[45] MOLLER C, PLESSET M S. Note on an approximation treatment for many-electron systems[J]. Physical Review, 1934, 46(7):618-622.
[46] HÄSER M, ALMLÖF J. Laplace transform techniques in Møller-Plesset perturbation theory[J]. The Journal of Chemical Physics, 1992, 96(1):489-494.
[47] HÄTTIG C. Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations:Core-valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr[J]. Physical Chemistry Chemical Physics, 2005, 7(1):59-66.
[48] MÁRQUEZL A M, DUPUIS M. Parallel computation of the MP2 energy on distributed memory computers[J]. Journal of Computational Chemistry, 1995, 16(4):395-404.
[49] BERNHOLDT D E, HARRISON R J. Fitting basis sets for the RI-MP2 approximate second-order many-body perturbation theory method[J]. The Journal of Chemical Physics, 1998, 109(5):1593-1600.
[50] BERNHOLDT D E, HARRISON R J. Orbital-invariant second-order many-body perturbation theory on parallel computers:An approach for large molecules[J]. The Journal of Chemical Physics, 1995, 102(24):9582-9589.
[51] SCHÜTZ M, LINDH R. An integral direct, distributed-data, parallel MP2 algorithm[J]. Theoretica chimica acta, 1997, 95(1):13-34.
[52] NIELSEN I M B, SEIDL E T. Parallel direct implementations of second-order perturbation theories[J]. Journal of Computational Chemistry, 1995, 16(10):1301-1313.
[53] ISHIMURA K, PULAY P, NAGASE S. A new parallel algorithm of MP2 energy calculations[J]. Journal of Computational Chemistry, 2006, 27(4):407-413.
[54] KATOUDA M, NAGASE S. Efficient parallel algorithm of second-order Møller-Plesset perturbation theory with resolution-of-identity approximation (RI-MP2)[J]. International Journal of Quantum Chemistry, 2009, 109(10):2121-2130.
[55] DOSER B, LAMBRECHT D S, KUSSMANN J, et al. Linear-scaling atomic orbital-based second-order Møller-Plesset perturbation theory by rigorous integral screening criteria[J]. The Journal of Chemical Physics, 2009, 130(6):064107.
[56] RAGHAVACHARI K, TRUCKS G W, POPLE J A, et al. A fifth-order perturbation comparison of electron correlation theories[J]. Chemical Physics Letters, 1989, 157(6):479-483.
[57] DALGAARD E, MONKHORST H J. Some aspects of the time-dependent coupled-cluster approach to dynamic response functions[J]. Physical Review A, 1983, 28(3):1217-1222.
[58] GEERTSEN J, RITTBY M, BARTLETT R J. The equation-of-motion coupled-cluster method:Excitation energies of Be and CO[J]. Chemical Physics Letters, 1989, 164(1):57-62.
[59] KOWALSKI K, PIECUCH P. The active-space equation-of-motion coupled-cluster methods for excited electronic states:Full EOMCCSDt[J]. The Journal of Chemical Physics, 2001, 115(2):643-651.
[60] WANG T, KRYLOV A I. Electronic structure of the two dehydro-meta-xylylene triradicals and their derivatives[J]. Chemical Physics Letters, 2006, 425(4-6):196-200.
[61] WATTS J D, BARTLETT R J. Economical triple excitation equation-of-motion coupled-cluster methods for excitation energies[J]. Chemical Physics Letters, 1995, 233(1-2):81-87.
[62] CHRISTIANSEN O, KOCH H, JORGENSEN P, et al. Excitation energies of H2O, N2 and C2 in full configuration interaction and coupled cluster theory[J]. Chemical Physics Letters, 1996, 256(1-2):185-194.
[63] KOWALSKI K, PIECUCH P. New coupled-cluster methods with singles, doubles, and noniterative triples for high accuracy calculations of excited electronic states[J]. The Journal of Chemical Physics, 2004, 120(4):1715-1738.
[64] RENDELL A P, GUEST M F, KENDALL R A. Distributed data parallel coupled-cluster algorithm:Application to the 2-hydroxypyridine/2-pyridone tautomerism[J]. Journal of Computational Chemistry, 1993, 14(12):1429-1439.
[65] MALMQVIST P A, RENDALL A, ROOS B O. The restricted active space self-consistent-field method, implemented with a split graph unitary group approach[J]. The Journal of Physical Chemistry, 1990, 94(14):5477-5482.
[66] HARDING L B, GODDARD Ⅲ W A. Generalized valence bond description of the low-lying states of formaldehyde[J]. Journal of the American Chemical Society, 1975, 97(22):6293-6299.
[67] AQUILANTE F, PEDERSEN T B, ROOS B O, et al. Accurate ab initio density fitting for multiconfigurational self-consistent field methods[J]. The Journal of Chemical Physics, 2008, 129(2):024113.
[68] OLSEN J, ROOS B O, JØRGENSEN P, et al. Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces[J]. The Journal of Chemical Physics, 1988, 89(4):2185-2192.
[69] FLETCHER G D. A parallel multi-configuration self-consistent field algorithm[J]. Molecular Physics, 2007, 105(23-24):2971-2976.
[70] MÜLLER T. Large-scale parallel uncontracted multireference-averaged quadratic coupled cluster:The ground state of the chromium dimer revisited[J]. The Journal of Physical Chemistry A, 2009, 113(45):12729-12740.
[71] KNECHT S, JENSEN H J A, FLEIG T. Large-scale parallel configuration interaction. I. Nonrelativistic and scalar-relativistic general active space implementation with application to (Rb-Ba)+[J]. The Journal of Chemical Physics, 2008, 128(1):014108. |