[1] OUYANG Y, GUO B, ZHANG J, et al. SentiStory:Multi-grained sentiment analysis and event summarization with crowdsourced social media data[J]. Personal & Ubiquitous Computing, 2017, 21(1):97-111.
[2] HE W, WANG F K, AKULA V. Managing extracted knowledge from big social media data for business decision making[J]. Journal of Knowledge Management, 2017, 21(2):275-294.
[3] ZHOU X, GUO L, LIU P, et al. Latent factor SVM for text categorization[C]//IEEE International Conference on Data Mining Workshop. IEEE, 2015:105-110.
[4] WAJEED M A, ADILAKSHMI T. Supervised and semi-supervised learning in text classification using enhanced KNN algorithm:A comparative study of supervised and semi-supervised classification in text categorization[J]. International Journal of Intelligent Systems Technologies & Applications, 2012, 11(3/4):179-195.
[5] RISTIN M, GUILLAUMIN M, GALL J, et al. Incremental learning of random forests for Large-Scale image classification[J]. IEEE Trans Pattern Anal Mach Intell, 2016, 38(3):490-503.
[6] BLEI D, NG A, JORDAN M. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003(3):993-1022.
[7] JARADAT S, DOKOOHAKI N, MATSKIN M. OLLDA:A supervised and dynamic topic mining framework in twitter[C]//2015 IEEE 15th International Conference on Data Mining Workshop. IEEE, 2016:1354-1359.
[8] 刘少鹏, 印鉴, 欧阳佳, 等. 基于MB-HDP模型的微博主题挖掘[J]. 计算机学报, 2015, 38(7):1408-1419.
[9] DUPUY C, BACH F, DIOT C. Qualitative and descriptive topic extraction from movie reviews using LDA[C]//Machine Learning and Data Mining in Pattern Recognition. Springer, 2017:91-106.
[10] MA J, YAO Z, SUN M. WSO-LDA:An online "Sentiment+Topic" weibo topic mining algorithm[C/OL]//Pacific Asia Conference on Information Systems.[2018-07-01].http://aisel.aisnet.org/pacis2017/223.
[11] 刘冰玉, 王翠荣, 王聪, 等. 基于动态主题模型融合多维数据的微博社区发现算法[J]. 软件学报, 2017, 28(2):246-261.
[12] KHOLGHI M, SITBON L, ZUCCON G, et al. External knowledge and query strategies in active learning:A study in clinical information extraction[C]//24th ACM International on Conference on Information and Knowledge Management. ACM, 2015:143-152.
[13] 陈德华, 殷苏娜, 乐嘉锦, 等. 一种面向临床领域时序知识图谱的链接预测模型[J]. 计算机研究与发展, 2017, 54(12):2687-2697.
[14] ORAMAS S, ESPINOSA-ANKE L, SORDO M, et al. Information extraction for knowledge base construction in the music domain[J]. Data & Knowledge Engineering, 2016, 106:70-83.
[15] VELASCO-ELÍZOÑDO P, MARIN-PINA R, VAZQUEZ-REYES S, et al. Knowledge representation and information extraction for analysing architectural patterns[J]. Science of Computer Programming, 2016, 121:176-189.
[16] DIETZ L, KOTOV A, MEIJ E. Utilizing knowledge graphs in text-centric information retrieval[C]//Tenth ACM International Conference on Web Search and Data Mining. ACM, 2017:815-816.
[17] 高俊平, 张晖, 赵旭剑, 等. 面向维基百科的领域知识演化关系抽取[J]. 计算机学报, 2016, 39(10):2088-2101.
[18] MARIN A, HOLENSTEIN R, SARIKAYA R, et al. Learning phrase patterns for text classification using a knowledge graph and unlabeled data[J]. ISCA-International Speech Communication Association, 2014(15):253-257.
[19] KLIEGR T, ZAMAZAL O. LHD 2.0:A text mining approach to typing entities in knowledge graphs[J]. Web Semantics Science Services & Agents on the World Wide Web, 2016, 39:47-61.
[20] SHI W, ZHENG W, YU J X, et al. Keyphrase extraction using knowledge graphs[J]. Data Science & Engineering, 2017, 2(4):275-288.
[21] CHEN Z, LIU B. Mining topics in documents:Standing on the shoulders of big data[C]//20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2014:1116-1125.
[22] BLEI D. Probabilistic topic models[J]. Communications of the ACM, 2012, 55(4):77-84.
[23] LU Y, MEI Q, ZHAI C. Investigating task performance of probabilistic topic models:An empirical study of PLSA and LDA[J]. Information Retrieval, 2011, 14(2):178-203.
[24] 北京字节跳动科技有限公司. 今日头条媒体平台[EB/OL].[2017-12-31]. https://www.toutiao.com/.
[25] KNUTH D E, MORRIS J H, PRATT V R, et al. Fast pattern matching in strings[J]. SIAM Journal on Computing, 1977, 6(2):323-350. |