[1] FRIEZE A, KARONSKI M. Introduction to Random Graphs[M]. Cambridge:Cambridge University Press, 2015.
[2] CIEPLAK M, GIACOMETTI A, MARITAN A, et al. Models of fractal river basins[J]. Journal of Statistical Physics, 1998, 91(1/2):1-15.
[3] ZHAO L, LAI Y C, PARK K, et al. Onset of traffic congestion in complex networks[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2005, 71(2):026125.
[4] GARlASCHELLI D, LOFFREDO M I. Fitness-dependent topological properties of the world trade web[J]. Physical Review Letters, 2004, 93(18):188701.
[5] GUIMERA R, AMARAL L A N. Modeling the world-wide airport network[J]. European Physical Journal B, 2004, 38(2):381-385.
[6] MACDONALD P J, ALMAAS E, BARABASI A L. Minimum spanning trees of weighted scale-free networks[J]. Epl, 2005, 72(2):308-314.
[7] DAI M, SUN Y, SHAO S, et al. Modified box dimension and average weighted receiving time on the weighted fractal networks[J]. Scientific Reports, 2015, 5:18210.
[8] WEI D J, LIU Q, ZHANG H X, et al. Box-covering algorithm for fractal dimension of weighted networks[J]. Sci Rep, 2013, 3(6157):3049.
[9] CARLETTI T. Stochastic weighted fractal networks[J]. Physics, 2012, 389(10):2134õ2142.
[10] CARLETTI T, RIGHI S. Weighted fractal networks[J]. Physica A, 2009, 389(10):2134-2142.
[11] YUAN Z J, GANG S W, RONG C G. Exact scaling for the mean first-passage time of random walks on a generalized Koch network with a trap[J]. Chinese Physics B, 2012, 21(3):525-529.
[12] LI L, SUN W G, WANG G X, et al. Mean first-passage time on a family of small-world treelike networks[J]. International Journal of Modern Physics C, 2014, 25(3):1350097(10 pages).
[13] ZHANG Z, GAO S. Scaling of mean first-passage time as efficiency measure of nodes sending information on scale-free Koch networks[J]. The European Physical Journal B, 2011, 80(2):209-216.
[14] DAI M F, XIE Q, XI L F. Trapping on weighted tetrahedron Koch networks with small-world property[J]. Fractals, 2014, 22(1/2):1450006(9 pages).
[15] SUN W. Random walks on generalized Koch networks[J]. Physica Scripta, 2013, 88(4):045006.
[16] DAI M F, YE D D, LI X Y, et al. Average weighted receiving time in recursive weighted Koch networks[J]. Pramana, 2016, 86(6):1173-1182.
[17] DAI M F, LI X Y, XI L F. Random walks on non-homogenous weighted Koch networks[J]. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2013, 23(3):033106.
[18] DONG Y, DAI M, YE D. Non-homogeneous fractal hierarchical weighted networks[J]. Plos One, 2015, 10(4):e0121946. |