[1] 吕红胤,连德富,聂敏,等.大数据引领教育未来:从成绩预测谈起[J].大数据, 2015, 1(4):118-121. [2] BORKAR S, RAJESWARI K. Attributes selection for predicting students' academic performance using education data mining and artificial neural network[J]. International Journal of Computer Applications, 2014, 86(10):25-29. [3] LAN A S, WATERS A E, STUDER C, et al. Sparse factor analysis for learning and content analytics[J]. Journal of Machine Learning Research, 2013, 15(1):1959-2008. [4] 张嘉,张晖,赵旭剑,等.规则半自动学习的概率软逻辑推理模型[J].计算机应用, 2018, 38(11):98-103. [5] 薛颖,沙秀艳.基于改进模糊聚类算法的灰色预测模型[J].统计与决策, 2017(9):29-32. [6] 文传军,詹永照.基于样本模糊隶属度归n化约束的松弛模糊C均值聚类算法[J].科学技术与工程, 2017, 17(36):96-104. [7] 赵琦,孙泽斌,冯文全,等.一种基于支持向量回归的建模方法[J].北京航空航天大学学报, 2017, 43(2):352-359 [8] 张麒增,戴翰波.基于数据预处理技术的学生成绩预测模型研究[J].湖北大学学报(自然科学版), 2019, 41(1):106-113. [9] 孙毅,刘仁云,王松,等.基于多元线性回归模型的考试成绩评价与预测[J].吉林大学学报(信息科学版), 2013, 31(4):404-408. [10] 陈岷.因子分析和神经网络相融合的体育成绩预测模型[J].现代电子技术, 2017(5):138-141. [11] NÚÑEZ J C, SUÁREZ N, ROSÁRIO P, et al. Relationships between perceived parental involvement in homework, student homework behaviors, and academic achievement:Differences among elementary, junior high, and high school students[J]. Metacognition and Learning, 2015, 10(3):375-406. [12] BUNKAR K, SINGH U K, PANDYA B, et al. Data mining:Prediction for performance improvement of graduate students using classification[C]//IEEE 2012 Ninth International Conference on Wireless and Optical Communications Networks (WOCN). New York:IEEE, 2012:1-5. |