[1] STEINBACH M C. Markowitz revisited: Mean-variance models in financial portfolio analysis [J]. SIAM Review, 2001, 43(1): 31-85 [2] KELLYJ L. A new interpretation of information rate [J]. IRE Transactions on Information Theory, 1956, 2(3): 185-189 [3] COVER M, ORDENTLICH E. Universal portfolios with side information [J]. IEEE Transactions on Information Theory, 1996, 42(2): 348-363 [4] SINGER Y. Switching portfolios [J]. International Journal of Neural Systems, 1997, 8(4): 445-455 [5] HELMBOLD D P, SCHAPIRE R E, SINGER Y, et al. On-line portfolio selection using multipli-cative updates [J]. Mathematical Finance, 1998, 8(4): 243-251 [6] GAIVORONSKI A A, STELLA F. Stochastic nonstationary optimization for finding universal portfolios [J]. Annals of Operations Research, 2000, 100: 165-188 [7] FAGIUOLI E, STELLA F, VENTURA A. Constant rebalanced portfolios and side-information [J]. Quantitative Finance, 2007, 7(2): 161-173 [8] AGARWAL A, HAZAN E, KALE S, et al. Algorithms for portfolio management based on the Newton method [C]//Proceedings of the 23rd International Conference on Machine learning. ACM, 2006: 9-16. [9] BORODIN A, EL-YANIV R, GOGAN V. Can we learn to beat the best stock [J]. Journal of Artificial Intelligence Research, 2004, 21: 579-594 [10] LI B, ZHAO P L, HOI S C H, et al. PAMR: Passive aggressive mean reversion strategy for portfolio selection [J]. Machine Learning, 2012, 87(2): 221-258 [11] LI B, HOI S C H, ZHAO P L, et al. Confidence weighted mean reversion strategy for online portfolio selection [J]. ACM Transactions on Knowledge Discovery from Data, 2011, 15(1): 434-442 [12] LI B, HOI S C H. On-line portfolio selection with moving average reversion [C]// Proceedings of the 29th International Conference on Machine Learning. [S.l]: [s.n.], 2012: 563-570. [13] HUANG D J, ZHOU J L, LI B, et al. Robust median reversion strategy for online portfolio selection [J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(9): 2480-2493 [14] LI B, WANG J L, HUANG D J, et al. Transaction cost optimization for online portfolio Selection [J]. Quantitative Finance, 2017, 18(8): 1411-1424 [15] GYÖRFI L, UDINA F, WALK H. Nonparametric nearest neighbor based empirical portfolio selection strategies [J]. Statistics and Decisions, 2008, 26(2): 145-157 [16] GYÖRFI L, LUGOSI G, UDINA F. Nonparametric kernel-based sequential investment strategies [J]. Mathematical Finance, 2006, 16(2): 337-357 [17] LI B, HOI S C H, GOPALKRISHNAN V. CORN: Correlation-driven nonparametric learning approach for portfolio selection [J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): Article number 21 [18] DUFFY N, HELMBOLD D. Boosting methods for regression [J]. Machine Learning, 2002, 47(2/3): 153-200 [19] CLAESKENS G, MAGNUS J R, VASNEV A L, et al. The forecast combination puzzle: A simple theoretical explanation [J]. International Journal of Forecasting, 2016, 32(3): 754-762 [20] CRAMMER K, DEKEL O, KESHET J, et al. Online passive-aggressive algorithms [J]. Journal of Machine Learning Research, 2006, 7(3): 551-585 [21] POTERBA J M, SUMMERS L H. Mean reversion in stock prices: Evidence and implications [J]. Social Science Electronic Publishing, 1987, 22(1): 27-59 [22] GRINOLD R C, KAHN R N. Active portfolio management: A quantitative approach for providing superior returns and controlling risk [M]. 2nd ed. New York: McGraw-Hill, 1999
|