1 |
ZHAO H J, JIANG D L, ZHANG S Q, et al. Analytical Chemistry, Development of a direct photoelectrochemical method for determination of chemical oxygen demand. 2004, 76 (1): 155- 160.
doi: 10.1021/ac0302298
|
2 |
ZANONI M V B, SENE J J, ANDERSON M A. Journal of Photochemistry and Photobiology A: Chemistry, Photoelectrocatalytic degradation of remazol brilliant orange 3R on titanium dioxide thin-film electrodes. 2003, 157 (1): 55- 63.
doi: 10.1016/S1010-6030(02)00320-9
|
3 |
REHMAN S, ULLAH R, BUTT A M, et al. Journal of Hazardous Materials, Strategies of making TiO2 and ZnO visible light active . 2009, 170 (2/3): 560- 569.
doi: 10.1016/j.jhazmat.2009.05.064
|
4 |
LI X Z, LI F B, FAN C M, et al. Water Research, Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO2 mesh photoelectrode . 2002, 36 (9): 2215- 2224.
doi: 10.1016/S0043-1354(01)00440-7
|
5 |
WANG Y W, HUANG Y, HO W K, et al. Journal of Hazardous Materials, Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation . 2009, 169 (1/2/3): 77- 87.
doi: 10.1016/j.jhazmat.2009.03.071
|
6 |
XIE D M, FENG S J, LIN Y, et al. Chinese Science Bulletin, Preparation of porous nanocrystalline TiO2 electrode by screen-printing technique . 2007, 52 (18): 2481- 2485.
doi: 10.1007/s11434-007-0372-0
|
7 |
LIANOS P. Journal of Hazardous Materials, Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: The concept of the photofuelcell: A review of a re-emerging research field. 2011, 185 (2/3): 575- 590.
|
8 |
WU Z Y, ZHAO G H, ZHANG Y J, et al. Journal of Materials Chemistry A, A solar-driven photocatalytic fuel cell with dual photoelectrode for simultaneous wastewater treatment and hydrogen production. 2015, 3 (7): 3416- 3424.
doi: 10.1039/C4TA06604A
|
9 |
LIU Y B, LI J H, ZHOU B X, et al. Water Research, Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell. 2011, 45 (13): 3991- 3998.
doi: 10.1016/j.watres.2011.05.004
|
10 |
SZKODA M, SIUZDAK K, LISOWSKA-OLEKSIAK A. Journal of Solid State Electrochemistry, Optimization of electrochemical doping approach resulting in highly photoactive iodine-doped titania nanotubes. 2016, 20 (2): 563- 569.
doi: 10.1007/s10008-015-3081-7
|
11 |
TIAN S Y, GUO J H, ZHAO C, et al. Journal of Nanoscience and Nanotechnology, Preparation of cellulose/graphene oxide composite membranes and their application in removing organic contaminants in wastewater. 2019, 19 (4): 2147- 2153.
doi: 10.1166/jnn.2019.15808
|
12 |
LIU Y B, LI J H, ZHOU B X, et al. Chemical Communications, A TiO2-nanotube-array-based photocatalytic fuel cell using refractory organic compounds as substrates for electricity generation . 2011, 47 (37): 10314- 10316.
doi: 10.1039/c1cc13388h
|
13 |
DENG P C, HU J Z, WANG H Z, et al. Journal of Advanced Oxidation Technologies, Hydrothermal preparation and comparative study of halogen-doping TiO2 photocatalysts . 2010, 13 (2): 200- 205.
|
14 |
SU W Y, ZHANG Y F, LI Z H, et al. Langmuir, Multivalency iodine doped TiO2: Preparation, characterization, theoretical studies, and visible-light photocatalysis . 2008, 24 (7): 3422- 3428.
doi: 10.1021/la701645y
|
15 |
TOJO S, TACHIKAWA T, FUJITSUKA M, et al. The Journal of Physical Chemistry C, Iodine-doped TiO2 photocatalysts: Correlation between band structure and mechanism . 2008, 112 (38): 14948- 14954.
doi: 10.1021/jp804985f
|
16 |
WANG W A, SHI Q, WANG Y P, et al. Applied Surface Science, Preparation and characterization of iodine-doped mesoporous TiO2 by hydrothermal method . 2011, 257 (8): 3688- 3696.
doi: 10.1016/j.apsusc.2010.11.108
|
17 |
DEVI L G, KAVITHA R. Applied Catalysis B: Environmental, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. 2013, 140, 559- 587.
|
18 |
MA Y, FU J W, XIA T, et al. Applied Surface Science, Low temperature synthesis of iodine-doped TiO2 nanocrystallites with enhanced visible-induced photocatalytic activity . 2011, 257 (11): 5046- 5051.
doi: 10.1016/j.apsusc.2011.01.019
|
19 |
LIU D, WANG J Q, ZHOU J, et al. Chemical Engineering Journal, Fabricating I doped TiO2 photoelectrode for the degradation of diclofenac: Performance and mechanism study . 2019, 369, 968- 978.
doi: 10.1016/j.cej.2019.03.140
|
20 |
DAGHRIR R, DROGUI P, ROBERT D. Journal of Photochemistry & Photobiology, A: Chemistry, Photoelectrocatalytic technologies for environmental applications. 2012, 238, 41- 52.
|
21 |
LEE W J, RAMASAMY E, LEE D Y, et al. Journal of Photochemistry and Photobiology A: Chemistry, Glass frit overcoated silver grid lines for nano-crystalline dye sensitized solar cells. 2006, 183 (1/2): 133- 137.
doi: 10.1016/j.jphotochem.2006.03.006
|
22 |
JANZEN E G, KOTAKE Y, HINTON R D. Free Radical Biology and Medicine, Stabilities of hydroxyl radical spin adducts of PBN-type spin traps. 1992, 12 (2): 169- 173.
doi: 10.1016/0891-5849(92)90011-5
|
23 |
GRATZEL M. Nature, Photoelectrochemical cells. 2001, 414 (6861): 338- 344.
doi: 10.1038/35104607
|
24 |
GARCIA-SEGURA S, BRILLAS E. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. 2017, 31, 1- 35.
doi: 10.1016/j.jphotochemrev.2017.01.005
|
25 |
ANTONIADOU M, LIANOS P. Applied Catalysis B: Environmental, Production of electricity by photoelectrochemical oxidation of ethanol in a photo fuel cell. 2010, 99 (1/2): 307- 313.
|
26 |
SU Y L, XIAO Y T, FU X, et al. Materials Research Bulletin, Photocatalytic properties and electronic structures of iodine-doped TiO2 nanotubes . 2009, 44 (12): 2169- 2173.
doi: 10.1016/j.materresbull.2009.08.017
|
27 |
ZHOU L, DENG J, ZHAO Y B, et al. Materials Chemistry and Physics, Preparation and characterization of N-I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation . 2009, 117 (2/3): 522- 527.
|
28 |
HO-KIMURA S, MONIZ S J A, HANDOKO A D, et al. Journal of Materials Chemistry A, Enhanced photoelectrochemical water splitting by nanostructured BiVO4-TiO2 composite electrodes . 2014, 2 (11): 3948- 3953.
doi: 10.1039/c3ta15268e
|
29 |
ANTONIADOU M, LIANOS P. Catalysis Today, Photoelectrochemical oxidation of organic substances over nanocrystalline titania: Optimization of the photoelectrochemical cell. 2009, 144 (1/2): 166- 171.
|
30 |
MENG X C, ZHANG Z S, LI X G. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Synergetic photoelectrocatalytic reactors for environmental remediation: A review. 2015, 24, 83- 101.
doi: 10.1016/j.jphotochemrev.2015.07.003
|
31 |
MATSUOKA M, KITANO M, FUKUMOTO S, et al. Catalysis Today, The effect of the hydrothermal treatment with aqueous NaOH solution on the photocatalytic and photoelectrochemical properties of visible light-responsive TiO2 thin films . 2008, 132 (1/2/3/4): 159- 164.
|
32 |
ANTONIADOU M, LIANOS P. Applied Catalysis B, Environmental, Production of electricity by photoelectrochemical oxidation of ethanol in a photo fuel cell. 2010, 99 (1/2): 307- 313.
|
33 |
ANTONIADOU M, KONDARIDES D I, LABOU D, et al. Solar Energy Materials and Solar Cells, An efficient photoelectrochemical cell functioning in the presence of organic wastes. 2009, 94 (3): 592- 597.
|