1 |
TIAN S Y, GUO J H, ZHAO C, et al. Preparation of cellulose/graphene oxide composite membranes and their application in removing organic contaminants in wastewater. Journal of Nanoscience and Nanotechnology, 2019, 19 (4): 2147- 2153.
doi: 10.1166/jnn.2019.15808
|
2 |
LIU D, ZHOU J, WANG J, et al. Enhanced visible light photoelectrocatalytic degradation of organic contaminants by F and Sn co-doped TiO2 photoelectrode . Chemical Engineering Journal, 2018, 344, 332- 341.
doi: 10.1016/j.cej.2018.03.103
|
3 |
GARCIA-SEGURA S, BRILLAS E. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 31, 1- 35.
doi: 10.1016/j.jphotochemrev.2017.01.005
|
4 |
CORCORAN E B, MCMULLEN J P, LÉVESQUE F, et al. Photon equivalents as a parameter for scaling photoredox reactions in flow: Translation of photocatalytic C−N cross-coupling from lab scale to multikilogram scale. Angewandte Chemie, 2020, 132 (29): 11964- 11968.
doi: 10.1002/ange.202004090
|
5 |
FARES A, RAHUL B, MOAYYED S. Solar oxidation of toluene over Co doped nano-catalyst. Chemosphere, 2020, 255, 126878.
doi: 10.1016/j.chemosphere.2020.126878
|
6 |
DENG H, WANG X C, WANG L, et al. Enhanced photocatalytic reduction of aqueous Re(Ⅶ) in ambient air by amorphous TiO2/g-C3N4 photocatalysts: Implications for Tc(Ⅶ) elimination . Chemical Engineering Journal, 2020, 401, 125977.
doi: 10.1016/j.cej.2020.125977
|
7 |
DUAN B, MEI L. A Z-scheme Fe2O3 /g-C3N4 heterojunction for carbon dioxide to hydrocarbon fuel under visible illuminance . Journal of Colloid And Interface Science, 2020, 575, 265- 273.
doi: 10.1016/j.jcis.2020.04.112
|
8 |
CHAUHAN D K, JAIN S, BATTULA V R, et al. Organic motif's functionalization via covalent linkage in carbon nitride: An exemplification in photocatalysis. Carbon, 2019, 152, 40- 58.
doi: 10.1016/j.carbon.2019.05.079
|
9 |
KADI M W, MOHAMED R M, ISMAIL A A, et al. Decoration of g-C3N4 nanosheets by mesoporous CoFe2O4 nanoparticles for promoting visible-light photocatalytic Hg(Ⅱ) reduction . Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125306.
|
10 |
LI Y, WANG S, CHANG W, et al. Co-monomer engineering optimized electron delocalization system in carbon-bridging modified g-C3N4 nanosheets with efficient visible-light photocatalytic performance . Applied Catalysis B: Environmental, 2020, 274, 119116.
doi: 10.1016/j.apcatb.2020.119116
|
11 |
LU M, SUN Z, ZHANG Y, et al. Construction of cobalt phthalocyanine sensitized SnIn4S8/g-C3N4 composites with enhanced photocatalytic degradation and hydrogen production performance . Synthetic Metals, 2020, 268, 116480.
doi: 10.1016/j.synthmet.2020.116480
|
12 |
HE J, YANG J, JIANG F, et al. Photo-assisted peroxymonosulfate activation via 2D/2D heterostructure of Ti3C2/g-C3N4 for degradation of diclofenac . Chemosphere, 2020, 258, 127339.
doi: 10.1016/j.chemosphere.2020.127339
|
13 |
CHENG J, HU Z, LI Q, et al. Fabrication of high photoreactive carbon nitride nanosheets by polymerization of amidinourea for hydrogen production. Applied Catalysis B: Environmental, 2019, 245, 197- 206.
doi: 10.1016/j.apcatb.2018.12.044
|
14 |
AI M, ZHANG J W, GAO R, et al. MnOx-decorated 3D porous C3N4 with internal donor–acceptor motifs for efficient photocatalytic hydrogen production . Applied Catalysis B: Environmental, 2019, 256, 117805.
doi: 10.1016/j.apcatb.2019.117805
|
15 |
HU X, VATANKHAH-VARNOOSFADERANI M, ZHOU J, et al. Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels. Adv Mater, 2015, 27 (43): 6899- 6905.
doi: 10.1002/adma.201503724
|
16 |
TIAN R, LIU D, WANG J, et al. Three-dimensional BiOI/TiO2 heterostructures with photocatalytic activity under visible light irradiation . Journal of Porous Materials, 2018, 25 (6): 1805- 1812.
doi: 10.1007/s10934-018-0594-3
|
17 |
WANG Y, ZHONG K, HUANG Z, et al. Novel g-C3N4 assisted metal organic frameworks derived high efficiency oxygen reduction catalyst in microbial fuel cells . Journal of Power Sources, 2020, 450, 227681.
doi: 10.1016/j.jpowsour.2019.227681
|
18 |
ZHANG Y, TIAN P, LI K, et al. C3N4 coordinated metal-organic-framework-derived network as air-cathode for high performance of microbial fuel cell . Journal of Power Sources, 2018, 408, 74- 81.
doi: 10.1016/j.jpowsour.2018.10.036
|
19 |
JIANG J, WANG X, ZHANG C, et al. Porous 0D/3D NiCo2O4/g-C3N4 accelerate emerging pollutant degradation in PMS/vis system: Degradation mechanism, pathway and toxicity assessment . Chemical Engineering Journal, 2020, 397, 125356.
doi: 10.1016/j.cej.2020.125356
|
20 |
WU X, LI S, WANG B, et al. Free-standing 3D network-like cathode based on biomass-derived N-doped carbon/graphene/g-C3N4 hybrid ultrathin sheets as sulfur host for high-rate Li-S battery . Renewable Energy, 2020, 158, 509- 519.
doi: 10.1016/j.renene.2020.05.098
|
21 |
ZHANG L, JIN Z, LI Y, et al. Zn–Ni–P nanoparticles decorated g-C3N4 nanosheets applicated as photoanode in photovoltaic fuel cells . Catalysis Letters, 2019, 149 (9): 2397- 2407.
doi: 10.1007/s10562-019-02859-8
|
22 |
GAO H, YANG H, XU J, et al. Strongly coupled g-C3N4 nanosheets-Co3O4 quantum dots as 2D/0D heterostructure composite for peroxymonosulfate activation . Small, 2018, 14, 1801353.
doi: 10.1002/smll.201801353
|
23 |
XI J, XIA H, NING X, et al. Carbon-intercalated 0D/2D hybrid of hematite quantum dots/graphitic carbon nitride nanosheets as superior catalyst for advanced oxidation. Small, 2019, 15 (43): 1902744.
doi: 10.1002/smll.201902744
|
24 |
SHENG Y, WEI Z, MIAO H, et al. Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst . Chemical Engineering Journal, 2019, 370, 287- 294.
doi: 10.1016/j.cej.2019.03.197
|
25 |
RODRIGUEZ J, THIVEL P X, PUZENAT E. Photocatalytic hydrogen production for PEMFC supply: A new issue. International Journal of Hydrogen Energy, 2013, 38 (15): 6344- 6348.
doi: 10.1016/j.ijhydene.2013.03.026
|
26 |
WANG Y, HUANG Y, HO W, et al. Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation . J Hazard Mater, 2009, 169 (1/2/3): 77- 87.
|
27 |
LIU G, DONG G, ZENG Y, et al. The photocatalytic performance and active sites of g-C3N4 effected by the coordination doping of Fe(III). Chinese Journal of Catalysis, 2020, 41 (10): 1564- 1572.
doi: 10.1016/S1872-2067(19)63518-7
|
28 |
QIN Y, SONG F, AI Z, et al. Protocatechuic acid promoted alachlor degradation in Fe(Ⅲ)/H2O2 fenton system . Environ Sci Technol, 2015, 49 (13): 7948- 7956.
doi: 10.1021/es506110w
|
29 |
QIN Y, ZHANG L, AN T. Hydrothermal carbon-mediated fenton-like reaction mechanism in the degradation of alachlor: Direct electron transfer from hydrothermal carbon to Fe(Ⅲ). ACS Appl Mater Interfaces, 2017, 9 (20): 17115- 17124.
doi: 10.1021/acsami.7b03310
|