1 |
谢治春, 赵兴庐, 刘媛. 金融科技发展与商业银行的数字化战略转型. 中国软科学, 2018, 184- 192.
|
2 |
YANG S, ZHANG Z Q, ZHOU J, et al. Financial risk analysis for smes with graph-based supply chain mining [C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI-20), Special Track on AI in FinTech. 2020: 4661-4667.
|
3 |
乔宇锋. 智能化金融监管: 模型框架、边缘约束和实践策略. 南方金融, 2021(4), 71- 80.
|
4 |
程雪军. 人工智能深度介入消费金融: 动因、风险及防控. 深圳大学学报(人文社会科学版), 2021, 38, 67- 76.
|
5 |
PASSERINI F, TONELLO A M. Smart grid monitoring using power line modems: Effect of anomalies on signal propagation. IEEE Access, 2019, (7): 27302- 27312.
|
6 |
李炳森, 胡全贵, 陈小峰, 等. 电网企业数据中台的研究与设计. 电力信息与通信技术, 2019, 17, 29- 34.
|
7 |
王全兴, 李思韬. 基于采集系统的反窃电技术分析及防范措施. 电测与仪表, 2016, 53, 78- 83.
|
8 |
李端超, 王松, 黄太贵, 等. 基于大数据平台的电网线损与窃电预警分析关键技术. 电力系统保护与控制, 2018, 46, 143- 151.
|
9 |
张晓新, 王奇超, 林峰, 等. 窄带物联网在专变用户防窃电应用中的研究. 电子器件, 2021, 44, 178- 181.
doi: 10.3969/j.issn.1005-9490.2021.01.034
|
10 |
庄池杰, 张斌, 胡军, 等. 基于无监督学习的电力用户异常用电模式检测. 中国电机工程学报, 2016, 36, 379- 387, 594.
|
11 |
黄悦华, 郭思涵, 鲍刚, 等. 基于用电特征分析的异常用电检测方法. 三峡大学学报(自然科学版), 2021, 43, 96- 101.
|
12 |
ISMAIL FAWAZ H, FORESTIER G, WEBER J, et al. Deep learning for time series classification: A review. Data Mining and Knowledge Discovery, 2019, 33 (4): 917- 963.
doi: 10.1007/s10618-019-00619-1
|
13 |
EBRAHIM S A , J POSHTAN, JAMALI S M, et al. Quantitative and qualitative analysis of time-series classification using deep learning. IEEE Access, 2020, (8): 90202- 90215.
|
14 |
WANG Z G, YAN W Z, OATES T. Time series classification from scratch with deep neural networks: A strong baseline [C]// 2017 International Joint Conference on Neural Networks (IJCNN) . IEEE, 2017: 1578-1585.
|
15 |
LINES J, DAVIS L M, HILLS J, et al. A shapelet transform for time series classification [C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2012: 289-297.
|
16 |
HE Q, DONG Z, ZHUANG F Z, et al. Fast time series classification based on infrequent shapelets [C]// 2012 11th International Conference on Machine Learning and Applications. IEEE, 2012: 215-219.
|
17 |
LE GUENNEC A, MALINOWSKI S, TAVENARD R. Data augmentation for time series classification using convolutional neural network [C/OL]// ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data. (2016)[2021-07-02]. https://halshs.archives-ouvertes.fr/halshs-01357973/document.
|
18 |
CUI Z, CHEN W, CHEN Y. Multi-scale convolutional neural networks for time series classification [EB/OL]. (2016-05-11)[2021-06-15]. https://arxiv.org/pdf/1603.06995.pdf.
|
19 |
曹阳, 闫秋艳, 吴鑫. 不平衡时间序列集成分类算法. 计算机应用, 2021, 41, 651- 656.
|
20 |
李艳霞, 柴毅, 胡友强, 等. 不平衡数据分类方法综述. 控制与决策, 2019, 34, 673- 688.
|
21 |
LI J, SI Y Y, XU T, et al. Deep convolutional neural network based ECG classification system using information fusion and one-hot encoding techniques [J/OL]. Mathematical Problems in Engineering, (2018-12-02)[2021-07-02]. https://doi.org/10.1155/2018/7354081.
|
22 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
|
23 |
CHALAPATHY R, CHAWLA S. Deep Learning for Anomaly Detection: A Survey [EB/OL]. (2019-01-23)[2020-07-02]. https://arxiv.org/pdf/1901.03407.pdf.
|