华东师范大学学报(自然科学版) ›› 2021, Vol. 2021 ›› Issue (6): 88-99.doi: 10.3969/j.issn.1000-5641.2021.06.010

• 计算机科学 • 上一篇    下一篇

面向移动边缘计算的联合计算卸载和资源分配策略研究

黄冬晴1, 俞黎阳1,*(), 陈珏2, 魏同权1   

  1. 1. 华东师范大学 计算机科学与技术学院, 上海 200062
    2. 上海工程技术大学 电子电气工程学院, 上海 201620
  • 收稿日期:2020-06-22 出版日期:2021-11-25 发布日期:2021-11-26
  • 通讯作者: 俞黎阳 E-mail:lyyu@cs.ecnu.edu.cn
  • 基金资助:
    上海市科学技术委员会项目(19YF1418300)

Research on joint computation offloading and resource allocation strategy for mobile edge computing

Dongqing HUANG1, Liyang YU1,*(), Jue CHEN2, Tongquan WEI1   

  1. 1. School of Computer Science and Technology, East China Normal University, Shanghai 200062, China
    2. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2020-06-22 Online:2021-11-25 Published:2021-11-26
  • Contact: Liyang YU E-mail:lyyu@cs.ecnu.edu.cn

摘要:

随着无人驾驶、在线游戏、虚拟现实等低延迟应用的大量涌现, 传统集中式的移动云计算范式越来越难以满足此类用户服务质量的需求. 为弥补云计算的不足, 移动边缘计算应运而生. 移动边缘计算通过计算卸载, 将计算任务迁移到网络边缘服务器来为用户提供计算和存储资源. 然而, 现有大部分工作仅考虑了延迟或能耗的单目标性能优化, 未考虑延迟和能耗的均衡优化. 为减少任务延迟和设备能耗, 提出了一种面向多用户的联合计算卸载和资源分配策略. 该策略首先利用拉格朗日乘子法获得给定卸载决策的最佳计算资源分配; 然后, 提出一个基于贪心算法的计算卸载算法获得最佳卸载决策; 最后, 通过不断迭代得到最终解. 实验结果表明, 与基准算法相比, 所提算法最高可以降低40%的系统成本.

关键词: 移动边缘计算, 计算卸载, 资源分配, 拉格朗日乘子法, 贪心算法

Abstract:

With the emergence of low-latency applications such as driverless cars, online gaming, and virtual reality, it is becoming increasingly difficult to meet users’ demands for service quality using the traditional centralized mobile cloud computing model. In order to make up for the shortages of cloud computing, mobile edge computing came into being, which provides users with computing and storage resources by migrating computing tasks to network edge servers through computation offloading. However, most of the existing work processes only consider single-objective performance optimization of delay or energy consumption, and do not consider the balanced optimization of delay and energy consumption. Therefore, in order to reduce task delay and equipment energy consumption, a multi-user joint computation offloading and resource allocation strategy is proposed. In this strategy, the Lagrange multiplier method is used to obtain the optimal allocation of computing resources for a given offloading decision. Then, a computation offloading algorithm based on a greedy algorithm is proposed to obtain the optimal offloading decision; the final solution is obtained through continuous iteration. Experimental results show that, compared with the benchmark algorithm, the proposed algorithm can reduce system costs by up to 40%.

Key words: mobile edge computing, computation offloading, resource allocation, Lagrange multiplier method, greedy algorithm

中图分类号: