1 |
AUSLANDER M, BRIDGER M. Stable Module Theory [M]. Rhode Island: American Mathematical Society, 1969.
|
2 |
. . 1993, 10 (1): 1- 9.
|
3 |
HOLM H. Gorenstein homological dimensions. Journal of Pure and Applied Algebra, 2004, 189, 167- 193.
|
4 |
BENNIS D. Rings over which the class of Gorenstein flat modules is closed under extensions. Communications in Algebra, 2009, 37 (3): 855- 868.
|
5 |
DING N Q, LI Y L, MAO L X. Strongly Gorenstein flat modules. Journal of the Australian Mathematical Society, 2009, 86 (3): 323- 338.
|
6 |
BENNIS D, MAHDOU N. Strongly Gorenstein projective, injective, and flat modules. Journal of Pure and Applied Algebra, 2007, 210, 437- 445.
|
7 |
HOLM H. Gorenstein projective, injective and flat modules [D]. Copenhagen: University of Copenhagen, 2004.
|
8 |
YANG X Y, LIU Z K. Strongly Gorenstein projective, injective and flat modules. Journal of Algebra, 2008, 320, 2659- 2674.
|
9 |
GAO Z H, WANG F G. Weak injective and weak flat modules. Communications in Algebra, 2015, 43 (9): 3857- 3868.
|
10 |
ZHAO T, XU Y. Remarks on Gorenstein weak injective and weak flat modules. Algebra Colloquium, 2020, 27 (4): 687- 702.
|
11 |
ANDERSON F W, FULLER K R. Rings and Categories of Modules [M]. New York: Spring-Verlag, 1992.
|
12 |
ROTMAN J J. An Introduction to Homological Algebra [M]. New York: Academic Press, 1979.
|
13 |
HUMMEL L, MARLEY T. The Auslander-Bridger formula and the Gorenstein property for coherent rings. Journal of Commutative Algebra, 2009, 1 (2): 283- 314.
|
14 |
ENOCHS E E, JENDA O M G. Relative Homological Algebra [M]. Berlin: Water de Gruyter, 2000.
|