1 |
SOLOMOM S, QIN D, MANNING M, et al. Technical summary. Climate change 2007: The physical science basis. Contribution of working group I to the fourth [R]. Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007: 19-91.
|
2 |
World Meteorologieal Organization. WMO Greenhouse Gas Bulletin (GHG Bulletin): The state of greenhouse gases in the atmosphere based on global observations through 2019 [EB/OL]. (2020-11-23)[2022-01-10]. https://www.doc88.com/p-31173044719519.html.
|
3 |
SEITZING S P, KROEZE C, STYLES R V. Global distribution of N2O emissions from aquatic systems: Natural emissions and anthropogenic effects . Chemosphere Global Change Science, 2000, 2 (3/4): 267- 279.
|
4 |
MUSENZE R S, WERNER U, GRINHAM A, et al. Methane and nitrous oxide emissions from a subtropical estuary (the Brisbane River estuary, Australia). Science of the Total Environment, 2014, 472, 719- 729.
|
5 |
CHMURA G L, ANISFDLD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 2003, 17 (4): 1111.
|
6 |
TONG C, WANG W Q, HUANG J F, et al. Invasive alien plants increase CH4 emissions from a subtropical tidal estuarine wetland . Biogeochemistry, 2012, 111 (1/2/3): 677- 693.
|
7 |
CHAMBERLAIN S D, GOMEZ-CASANOVAS N, WALTER M T, et al. Influence of transient flooding on methane fluxes from subtropical pastures. Journal of Geophysical Research: Biogeosciences, 2016, 121 (3): 965- 977.
|
8 |
SÁNCHEZ-RODRÍGUEZ J, SIERRA A, JIMÉNEZ-LÓPEZ D, et al. Dynamic of CO2, CH4 and N2O in the Guadalquivir estuary . Science of the Total Environment, 2022, 805, 150193.
|
9 |
汪青, 刘敏, 侯立军, 等. 崇明东滩湿地 CO2、CH4和 N2O 排放的时空差异 . 地理研究, 2010, 29 (5): 935- 946.
|
10 |
JØRGENSEN B B, KASTEN S. Sulfur cycling and methane oxidation [M]// SCHULZ H D, MATTHIAS Z. Marine Geochemistry. Berlin, Heidelberg : Springer Verlag , 2006: 271-309.
|
11 |
贺文君, 韩广轩, 宋维民, 等. 潮汐作用对黄河三角洲盐沼湿地甲烷排放的影响. 生态学报, 2019, 39 (17): 6238- 6246.
|
12 |
许鑫王豪, 赵一飞, 邹欣庆, 等. 中国滨海湿地 CH4通量研究进展 . 自然资源学报, 2015, 30 (9): 1594- 1605.
|
13 |
OSBURN C L, MIKAN M P, ETHERIDGE J R, et al. Seasonal variation in the quality of dissolved and particulate organic matter exchanged between a salt marsh and its adjacent estuary. Journal of Geophysical Research: Biogeosciences, 2015, 120 (7): 1430- 1449.
|
14 |
BOGARD M J, BERGAMASCHI B A, BUTMAN D E, et al. Hydrologic export is a major component of coastal wetland carbon budgets [J]. Global Biogeochemical Cycles, 2020, 34(8): e2019GB006430.
|
15 |
高洁, 郑循华, 王睿, 等. 漂浮通量箱法和扩散模型法测定内陆CH4和N2O排放通量的初步比较研究 [J]. 气候与环境研究, 2014, 19(3): 290-302.
|
16 |
ARÉVALO-MARTÍNEZ D L, BEYER M, KRUMBHOLZ M, et al. A new method for continuous measurements of oceanic and atmospheric N2O, CO and CO2: Performance of off-axis integrated cavity output spectroscopy (OA-ICOS) coupled to non-dispersive infrared detection (NDIR) . Ocean Science, 2013, 9 (6): 1071- 1087.
|
17 |
PUMPANEN J, KOLARI P, ILVESNIEMI H, et al. Comparison of different chamber techniques for measuring soil CO2 efflux . Agricultural and Forest Meteorology, 2004, 123 (3/4): 159- 176.
|
18 |
GUÉRIN F, ABRIL G, SERÇA D, et al. Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream . Journal of Marine Systems, 2007, 66 (1/2/3/4): 161- 172.
|
19 |
SANTOS I R, MAHER D T, EYRE B D, et al. Coupling automated radon and carbon dioxide measurements in coastal waters. Environmental Science & Technology, 2012, 46 (14): 7685- 7691.
|
20 |
WEBB J R, MAHER D T, SANTOS I R, et al. Automated, in situ measurements of dissolved CO2, CH4, and δ13C values using cavity enhanced laser absorption spectrometry: Comparing response times of air-water equilibrators [J]. Limnology and Oceanography: Methods, 2016, 14(5): 323-337.
|
21 |
崔百惠. 九段沙附近水体浮游植物群落结构变化研究 [D]. 上海: 上海师范大学, 2014.
|
22 |
陈家宽. 上海九段沙湿地自然保护区科学考察集 [M]. 北京: 科学出版社, 2003.
|
23 |
马华, 陈秀芝, 潘卉, 等. 持续收割对上海九段沙湿地芦苇生长特征、生物量和土壤全氮含量的影响. 生态与农村环境学报, 2013, 29 (2): 209- 213.
|
24 |
马安娜, 陆健健. 长江口崇西湿地生态系统的二氧化碳交换及潮汐影响. 环境科学研究, 2011, 24 (7): 716- 721.
|
25 |
沙晨燕, 王天慧, 陆健健. 林泽湿地抗 SO2木本植物的初步研究 . 环境科学研究, 2009, 22 (2): 181- 186.
|
26 |
陈梓涵. 九段沙潮汐盐沼湿地 CO2 通量及影响机制研究 [D]. 上海: 华东师范大学. 2020.
|
27 |
ZHANG G L, ZHANG J, LIU S M, et al. Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area: Riverine input, sediment release and atmospheric fluxes. Biogeochemistry, 2008, 91 (1): 71- 84.
|
28 |
翁笑艳, 林美爱, 严颖. 地表水浮游植物叶绿素 a 测定方法比较研究. 中国环境监测, 2009, 25 (3): 36- 39.
|
29 |
林罗敏, 唐鹊辉, 彭亮, 等. 浮游植物叶绿素 a 的微波法研究及其与反复冻融法的比较. 湖泊科学, 2016, 28 (5): 1148- 1152.
|
30 |
TAN L S, GE Z M, LI S H, et al. Reclamation-induced tidal restriction increases dissolved carbon and greenhouse gases diffusive fluxes in salt marsh creeks. Science of the Total Environment, 2021, 773, 145684.
|
31 |
晏维金, 王蓓, 李新艳, 等. 河流溶存 N2O 的环境化学过程及其在水-气界面交换过程的研究 . 农业环境科学学报, 2008, 27 (1): 15- 22.
|
32 |
SANDER R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics, 2015, 15 (8): 4399- 4981.
|
33 |
WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography Methods, 2014, 12 (6): 351- 362.
|
34 |
RAYMOND P A, COLE J J. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity. Estuaries, 2001, 24 (2): 312- 317.
|
35 |
吴琼. 九段沙湿地自然保护区及其附近水体浮游植物的研究 [D]. 上海: 上海师范大学. 2009.
|
36 |
黄国宏, 李玉祥, 陈冠雄, 等. 环境因素对芦苇湿地 CH4排放的影响 . 环境科学, 2001, 22 (1): 1- 5.
|
37 |
YVON-DUROCHER G, ALLEN A P, BASTVIKEN D, et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 2014, 507 (7493): 488- 491.
|
38 |
NATCHIMUTHU S, SUNDGREN I, GÅIFALK M, et al. Spatio-temporal variability of lake CH4 fluxes and its influence on annual whole lake emission estimates . Limnology and Oceanography, 2016, 61 (S1): S13- S26.
|
39 |
HARLEY J F, CARVALHO L, DUDLEY B, et al. Spatial and seasonal fluxes of the greenhouse gases N2O, CO2 and CH4 in a UK macrotidal estuary . Estuarine Coastal and Shelf Science, 2015, 153, 62- 73.
|
40 |
姜欢欢, 孙志高, 王玲玲, 等. 秋季黄河口滨岸潮滩湿地系统 CH4通量特征及影响因素研究 . 环境科学, 2012, 33 (2): 565- 573.
|
41 |
Sun Z G, JIANG H H, WANG L L, et al. Seasonal and spatial variations of methane emissions from coastal marshes in the northern Yellow River estuary, China. Plant and Soil, 2013, 369 (1/2): 317- 333.
|
42 |
CHEN Q F, GUO B B, ZHAO C S, et al. Characteristics of CH4 and CO2 emissions and influence of water and salinity in the Yellow River delta wetland, China . Environmental Pollution, 2018, 239, 289- 299.
|
43 |
曾从盛, 王维奇, 仝川. 不同电子受体及盐分输入对河口湿地土壤甲烷产生潜力的影响. 地理研究, 2008, 27 (6): 1321- 1330.
|
44 |
BARTLETT K B, BARTLETT D S, HARRISS R C, et al. Methane emissions along a salt marsh salinity gradient. Biogeochemistry, 1987, 4 (3): 183- 202.
|
45 |
KLÜBER H. Inhibitory effects of nitrate, nitrite, NO and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii . FEMS Microbiology Ecology, 1998, 25 (4): 331- 339.
|
46 |
DEPPE M, KNORR K H, MCKNIGHT D M, et al. Effects of short-term drying and irrigation on CO2 and CH4 production and emission from mesocosms of a northern bog and an alpine fen . Biogeochemistry, 2010, 100 (1/2/3): 89- 103.
|
47 |
CHEN H, WU N, WANG Y F, et al. Inter-annual variations of methane emission from an open fen on the Qinghai-Tibetan Plateau: A three-year study. PLoS One, 2013, 8 (1): e53878.
|
48 |
仝川, 曾从盛, 王维奇, 等. 闽江河口芦苇潮汐湿地甲烷通量及主要影响因子. 环境科学学报, 2009, 29 (1): 207- 216.
|
49 |
祝栋林. 太湖及玄武湖甲烷气体产生、释放及影响机制研究 [D]. 南京: 南京大学. 2012.
|
50 |
何凯, 王洪伟, 胡晓康, 等. 巢湖不同富营养化区域甲烷排放通量与途径. 中国环境科学, 2021, 41 (7): 3306- 3315.
|
51 |
WANG D Q, CHEN Z L, SUN W W, et al. Methane and nitrous oxide concentration and emission flux of Yangtze Delta plain river net. Science in China Series B: Chemistry, 2009, 52 (5): 652- 661.
|
52 |
ABRIL G, BORGES A V. Carbon dioxide and methane emissions from estuaries [M]// TREMBLAY A, VARFALVY L, ROEHM C, et al. Greenhouse Gas Emissions-Fluxes and Processes. Berlin, Heidelberg : Springer Verlag , 2005: 187-207.
|
53 |
RHEE T S, KETTLE A J, ANDREAE M O, et al. Methane and nitrous oxide emissions from the ocean: A reassessment using basin-wide observations in the Atlantic. Journal of Geophysical Research Atmospheres, 2009, 114 (D12): 1- 20.
|
54 |
马立杰, 崔迎春. 南海中部和北部上层海水中溶存甲烷浓度及海气交换通量. 热带海洋学报, 2013, 32 (2): 94- 101.
|
55 |
COTOVICZ L C, KNOPPER B A, BRANDINI N, et al. Spatio-temporal variability of methane (CH4) concentrations and diffusive fluxes from a tropical coastal embayment surrounded by a large urban area (Guanabara Bay, Rio de Janeiro, Brazil) . Limnology and Oceanography, 2016, 61 (S1): S238- S252.
|
56 |
CALL M, MAHER D T, SANTOS I R, et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek. Geochimica et Cosmochimica Acta, 2015, 150, 211- 225.
|
57 |
LINTO N, BARNES J, RAMACHANDRAN R, et al. Carbon dioxide and methane emissions from mangrove associated waters of the Andaman Islands, Bay of Bengal. Estuaries and Coasts, 2014, 37 (2): 381- 398.
|
58 |
李佩佩. 黄河口及黄、渤海溶存甲烷和氧化亚氮的分布与释放通量 [D]. 山东 青岛: 中国海洋大学, 2010.
|
59 |
YANG W B, YUAN C S, TONG C, et al. Diurnal variation of CO2, CH4, and N2O emission fluxes continuously monitored in-situ in three environmental habitats in a subtropical estuarine wetland . Marine Pollution Bulletin, 2017, 119 (1): 289- 298.
|
60 |
RAJKUMAR A N, BARNES J, RAMESH R, et al. Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India. Marine Pollution Bulletin, 2008, 56 (12): 2043- 2051.
|
61 |
SAWAKUCHI H O, BASTVIKEN D, SAWAKUCHI A, et al. Methane emissions from Amazonian Rivers and their contribution to the global methane budget. Global Change Biology, 2014, 20 (9): 2829- 2840.
|
62 |
TILBROOK B D, KARL D M. Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre. Marine Chemistry, 1995, 49 (1): 51- 64.
|
63 |
张桂玲, 张经. 海洋中溶存甲烷研究进展. 地球科学进展, 2001, 16 (6): 829- 835.
|
64 |
JAYAKUMAR D A, NAQVI S W A, NARVEKAR P V, et al. Methane in coastal and offshore waters of the Arabian Sea. Marine Chemistry, 2001, 74 (1): 1- 13.
|