1 |
BAULÉ D D S, WANGENHEIM C, WANGENHEIM A V, et al.. Recent progress in automated code generation from GUI images using machine learning techniques. Journal of Universal Computer Science, 2020, 26 (9): 1095.
|
2 |
BELTRAMELLI T. Pix2code: Generating code from a graphical user interface screenshot [C]// Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems. ACM, 2018.
|
3 |
O’SHEA K, NASH R. An Introduction to Convolutional Neural Networks [EB/OL]. (2015-11-26)[2023-06-30]. https://arxiv.org/pdf/1511.08458.pdf.
|
4 |
YU Y, SI X, HU C, et al.. A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation, 2019, 31 (7): 1235- 1270.
|
5 |
ZHU Z, XUE Z, YUAN Z. Automatic Graphics Program Generation Using Attention-Based Hierarchical Decoder [M]// JAWAHAR C, LI H, MORI G, et al. Computer Vision – ACCV 2018. Cham: Springer, 2019: 181-196.
|
6 |
XU Y, BO L, SUN X, et al.. image2emmet: Automatic code generation from web user interface image. Journal of Software: Evolution and Process, 2021, 33 (8): e2369.
|
7 |
CHEN W Y, PODSTRELENY P, CHENG W H, et al.. Code generation from a graphical user interface via attention-based encoder–decoder model. Multimedia Systems, 2021, (5): 1- 10.
|
8 |
XU K, BA J, KIROS R, et al. Show, attend and tell: Neural image caption generation with visual attention [J]. (2015-02-10)[2023-06-30]. https://arxiv.org/pdf/1502.03044.pdf.
|
9 |
HOSSAIN M Z, SOHEL F, SHIRATUDDIN M F, et al.. A comprehensive survey of deep learning for image captioning. ACM Computing Surveys, 2019, 51 (6): 1- 36.
|
10 |
XIAN T, LI Z, ZHANG C, et al.. Dual Global Enhanced Transformer for image captioning. Neural Networks, 2022, (148): 129- 141.
|
11 |
TAN J H, TAN Y H, CHAN C S, et al.. ACORT: A compact object relation transformer for parameter efficient image captioning. Neurocomputing, 2022, 482, 60- 72.
|
12 |
LIU Z, LIN Y, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 10012-10022.
|
13 |
BAJAMMAL M, MAZINANIAN D, MESBAH A. Generating reusable web components from mockups [C]// Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. 2018: 601-611.
|
14 |
ANDERSON P, HE X, BUEHLER C, et al. Bottom-up and top-down attention for image captioning and visual question answering [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 6077-6086.
|
15 |
WEI Y, WU C, LI G, et al.. Sequential transformer via an outside-in attention for image captioning. Engineering Applications of Artificial Intelligence, 2022, 108, 104574.
|
16 |
BEN H, PAN Y, LI Y, et al.. Unpaired image captioning with semantic-constrained self-learning. IEEE Transactions on Multimedia, 2021, 24, 904- 916.
|
17 |
WANG Y, XU J, SUN Y. End-to-end transformer based model for image captioning [C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2022: 2585-2594.
|
18 |
LUO J, LI Y, PAN Y, et al. Semantic-conditional diffusion networks for image captioning [C]// 2023 IEEE Conference on Computer Vision and Pattern Recognition. 2023: 23359-23368.
|
19 |
RAMOS R, MARTINS B, ELLIOTT D, et al. Smallcap: Lightweight image captioning prompted with retrieval augmentation [C]// 2023 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2023: 2840-2849.
|
20 |
WEI J, LI Z, ZHU J, et al.. Enhance understanding and reasoning ability for image captioning. Applied Intelligence, 2023, 53 (3): 2706- 2722.
|
21 |
GUNDECHA U. Learning Selenium Testing Tools with Python [M]. Birmingham: Packt Publishing, 2014.
|
22 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 6000–6010.
|
23 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [EB/OL]. (2020-10-22)[2023-06-30]. https://arxiv.org/pdf/2010.11929.pdf.
|
24 |
PAPINENI K, ROUKOS S, WARD T, et al. BLEU: A method for automatic evaluation of machine translation [C]// Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. 2022: 311-318.
|
25 |
SATANJEEV B. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments [C]// Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization. Association for Computational Linguistics, 2005: 65-72.
|