我国在数据资源上具有规模化和多样化的优势, 在移动互联网数据应用上具有后发优势, 在丰富的应用场景下产生了海量数据, 推荐系统可以从大规模数据中挖掘有价值的信息, 缓解信息过载问题. 已有的工作聚焦于集中式推荐, 数据在云侧训练. 随着数据安全和隐私保护问题的日益突出, 从端侧设备收集用户数据变得越发困难, 这使得集中式推荐变得不可行. 以去中心化的方式, 利用端侧设备和云服务器的优势, 充分考虑数据安全与隐私保护问题, 面向推荐系统, 提出了一个基于联邦机器学习 (federated machine learning, FedML)与移动神经网络 (mobile neural network, MNN) 的端云协同训练方法FedMNN (federated machine learning and mobile neural network). 具体分为3部分: 首先, 将多种深度学习框架实现的云侧模型以ONNX (open neural network exchange)作为中间框架通过MNN模型转换工具转换成通用MNN模型供端侧设备训练; 然后, 云侧将模型下发给端侧设备, 端侧初始化后, 获取本地数据进行训练并计算损失, 再执行梯度反向传播; 最后, 端侧训练后的模型反馈给云侧, 通过联邦学习框架进行模型聚合与更新, 再根据不同需求, 将云侧模型按需部署到端侧设备上, 实现端云协同. 实验通过对比FedMNN和FLTFlite (flower and TensorFlow lite)框架在基准任务上的功耗, 发现FedMNN比FLTFlite低32% ~ 51%, 并以DSSM (deep structured semantic model)和Deep and Wide这2个推荐模型为例, 实验验证了端云协同训练的有效性.