1 |
KONECNY J, MCMAHAN H B, YU F, et al. Federated learning: Strategies for improving communication efficiency [EB/OL]. (2017-10-30)[2023-07-06]. https://arxiv.org/abs/1610.05492.
|
2 |
KAIROUZ P, MCMAHAN H B, AVENT B, et al.. Advances and open problems in federated learning. Foundations and Trends in Machine Learning, 2021, 14 (1/2): 1- 210.
|
3 |
MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [C] // Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS). 2017, 54: 1273-1282.
|
4 |
LI T, SAHU A K, ZAHEER M, et al.. Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems, 2020, (2): 429- 450.
|
5 |
LIU R, WU F, WU C, et al. No one left behind: Inclusive federated learning over heterogeneous devices [C] // Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2022: 3398-3406.
|
6 |
ZHAO Z, FENG C, YANG H H, et al.. Federated-learning-enabled intelligent fog radio access networks: Fundamental theory, key techniques, and future trends. IEEE Wireless Communications, 2020, 27 (2): 22- 28.
|
7 |
YANG H, ARAFA A, QUEK T, et al. Age-based scheduling policy for federated learning In mobile edge networks [C] // Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020: 8743-8747.
|
8 |
刘汪根, 郑淮城, 荣国平.. 云环境下大规模分布式计算数据感知的调度系统. 大数据, 2020, 6 (1): 81- 98.
|
9 |
SHEN S, ZHU T, WU D, et al. From distributed machine learning to federated learning: In the view of data privacy and security [J]. Concurrency and Computation: Practice and Experience, 2020: 1-19.
|
10 |
刘俊旭, 孟小峰.. 机器学习的隐私保护研究综述. 计算机研究与发展, 2020, 57 (2): 346- 362.
|
11 |
PAPERNOT N, MCDANIEL P, SINHA A, et al. Towards the science of security and privacy in machine learning [EB/OL]. (2016-11-11)[2023-07-06]. https://arxiv.org/abs/1611.03814.
|
12 |
刘艺璇, 陈红, 刘宇涵, 等.. 联邦学习中的隐私保护技术. 软件学报, 2022, 33 (3): 1057- 1092.
|
13 |
YU X, YAN Z, VASILAKOS A.. A survey of verifiable computation. Mobile Networks and Applications, 2017, 22 (3): 438- 453.
|
14 |
李宁波, 周潭平, 车小亮, 等.. 多密钥全同态加密研究. 密码学报, 2020, 7 (6): 713- 734.
|
15 |
TRUEX S, BARACALDO N, ANWAR A, et al. A hybrid approach to privacy-preserving federated learning [C] // Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security. 2019: 1-11.
|
16 |
BERNSTEIN G, SHELDON D. Differentially private Bayesian linear regression [C] // Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019: 525-535.
|
17 |
LEE K, LAM M, PEDARSANI R, et al.. Speeding up distributed machine learning using codes. IEEE Transactions on Information Theory, 2017, 64 (3): 1514- 1529.
|
18 |
郑腾飞, 周桐庆, 蔡志平, 等.. 编码计算研究综述. 计算机研究与发展, 2021, 58 (10): 2187- 2212.
|
19 |
CAO C M, WANG J, WANG J P, et al. Optimal task allocation and coding design for secure coded edge computing [C] // Proceedings of the 39th IEEE International Conference on Distributed Computing Systems (ICDCS). 2019: 1083-1093.
|
20 |
DHAKAL S, PRAKASH S, YONA Y, et al. Coded federated learning [C] // Proceedings of the IEEE Globecom Workshops (GC Wkshps). 2019: 1-6.
|
21 |
CHELLAPILLA K, PURI S, SIMARD P. High performance convolutional neural networks for document processing [EB/OL]. (2006-11-09)[2023-07-06]. https://inria.hal.science/inria-00112631/document.
|