1 |
HAN W S, NG J, MARKL V, et al. Progressive optimization in a shared-nothing parallel database [C/OL]// Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data. Beijing: ACM, 2007: 809-820. [2023-05-16]. https://dl.acm.org/doi/10.1145/1247480.1247569.
|
2 |
VUPPALAPATI M, TRUONG D, MIRON J, et al. Building an elastic query engine on disaggregated storage [C]// Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation. Santa Clara, CA, USA, 2020.
|
3 |
DAGEVILLE B, CRUANES T, ZUKOWSKI M, et al. The snowflake elastic data warehouse [C/OL]// Proceedings of the 2016 International Conference on Management of Data. San Francisco, CA, USA: ACM, 2016: 215-226. [2023-05-16]. https://dl.acm.org/doi/10.1145/2882903.2903741.
|
4 |
CLICKHOUSE. Fast Open-Source OLAP DBMS [EB/OL]. [2023-05-16]. https://clickhouse.com/.
|
5 |
GAO P X, NARAYAN A, AGARWAL R, et al. Network requirements for resource disaggregation [C]// Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation. Savannah, GA, USA, 2016.
|
6 |
GU J, LEE Y, ZHANG Y, et al. Efficient memory disaggregation with INFINISWAP [C]// Proceedings of the 14th USENIX Symposium on Networked Systems Design and Implementation. Boston, MA, USA, 2017.
|
7 |
DONG S, CALLAGHAN M, GALANIS L, et al. Optimizing space amplification in RocksDB [C/OL]// 8th Biennial Conference on Innovative Data Systems Research. Chaminade, CA, USA, 2017. [2023-05-16]. https://lrita.github.io/images/posts/database.
|
8 |
ZHOU J, XU M, SHRAER A, et al.. FoundationDB: A Distributed key value Store. ACM SIGMOD Record, 2022, 51 (1): 24- 31.
|
9 |
CAMACHO-RODRÍGUEZ J, CHAUHAN A, GATES A, et al. Apache hive: From MapReduce to enterprise-grade big data warehousing [EB/OL]. (2019-03-26)[2023-05-16]. http://arxiv.org/abs/1903.10970.
|
10 |
ARMENATZOGLOU N, BASU S, BHANOORI N, et al. Amazon redshift re-invented [C/OL]// Proceedings of the 2022 International Conference on Management of Data. New York, NY, USA: Association for Computing Machinery, 2022: 2205-2217. [2023-05-29]. https://dl.acm.org/doi/10.1145/3514221.3526045.
|
11 |
GUPTA A, AGARWAL D, TAN D, et al. Amazon redshift and the case for simpler data warehouses [C/OL]// Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. Melbourne Victoria, Australia: ACM, 2015: 1917-1923. [2023-06-19]. https://dl.acm.org/doi/10.1145/2723372.2742795.
|
12 |
HALEVY A, KORN F, NOY N F, et al. Goods: Organizing Google’s datasets [C/OL]// Proceedings of the 2016 International Conference on Management of Data. San Francisco, CA, USA: ACM, 2016: 795-806. [2023-05-16]. https://dl.acm.org/doi/10.1145/2882903.2903730.
|
13 |
EDARA P, PASUMANSKY M. Big metadata: When metadata is big data[J]. Proceedings of the VLDB Endowment 14(12): 3083-3095.
|
14 |
ZAHARIA M, CHOWDHURY M, DAS T, et al. Resilient distributed datasets: A Fault-tolerant abstraction for in-memory cluster computing [C]// Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation. Publication History, 2012.
|
15 |
AMAZON. Amazon simple storage service (user guide) [Z/OL]. (2006-03-01)[2023-06-09]. https://docs.aws.amazon.com/AmazonS3/latest/userguide/.
|
16 |
BORTHAKUR D. HDFS architecture guide [Z/OL]. (2022-05-18)[2023-06-19]. https://docs.huihoo.com/apache/hadoop/1.0.4/hdfs_design.pdf.
|
17 |
MICROSOFT AZURE. Azure blob storage [EB/OL]. [2023-05-16]. https://azure.microsoft.com/en-us/products/storage/blobs.
|
18 |
MACKEY G, SEHRISH S, WANG J. Improving metadata management for small files in HDFS [C]// 2009 IEEE International Conference on Cluster Computing and Workshops. New Orleans, LA, USA, 2009.
|