华东师范大学学报(自然科学版) ›› 2024, Vol. 2024 ›› Issue (5): 81-92.doi: 10.3969/j.issn.1000-5641.2024.05.008

• 教育知识图谱与大语言模型 • 上一篇    下一篇

国内大语言模型在学科知识图谱自动标注上的应用——以道德与法治和数学学科为例

寇思佳1(), 闫凤云2, 马晶3   

  1. 1. 教育部教育技术与资源发展中心(中央电化教育馆), 北京 100031
    2. 北京市延庆区教育科学研究中心, 北京 102100
    3. 北京大学附属中学 北京 100190
  • 收稿日期:2024-07-05 接受日期:2024-07-05 出版日期:2024-09-25 发布日期:2024-09-23
  • 作者简介:寇思佳, 女, 助理研究员, 研究方向为教育大数据和知识图谱. E-mail: 18209515726@163.com
  • 基金资助:
    国家重点研发计划(2023YFC3341200)

A case study on the application of the automatic labelling of the subject knowledge graph of Chinese large language models: Take morality and law and mathematics as examples

Sijia KOU1(), Fengyun YAN2, Jing MA3   

  1. 1. Center for Educational Technology and Resource Development, Ministry of Education P.R.China (National Center for Educational Technology, NCET), Beijing 100031, China
    2. Beijing Yanqing Education Center for Scientific Research, Beijing 102100, China
    3. The Affiliated High School of Peking University, Beijing 100190, China
  • Received:2024-07-05 Accepted:2024-07-05 Online:2024-09-25 Published:2024-09-23

摘要:

随着人工智能技术的迅猛发展, 大语言模型 (large language models, LLMs) 在自然语言处理和各种知识应用中展现了强大的能力. 研究了国内大语言模型在中小学学科知识图谱自动标注中的应用, 重点以义务教育阶段道德与法治学科和高中数学学科为例进行分析和探讨. 在教育领域, 知识图谱的构建对于整理和系统化学科知识具有重要意义, 然而传统的知识图谱构建方法在数据标注方面存在效率低、耗费大量人工成本等问题. 研究旨在通过大语言模型来解决这些问题, 从而提升知识图谱构建的自动化和智能化水平. 基于国内大语言模型的现状, 探讨了其在学科知识图谱自动标注中的应用, 以道德与法治和数学学科为例, 阐述了相关方法和实验结果. 首先, 探讨了研究背景和意义. 接着, 综述了国内大语言模型的发展现状和学科知识图谱的自动标注技术. 在方法与模型部分, 尝试探索一种基于国内大语言模型的自动标注方法, 力图完善其在学科知识图谱上的应用. 还探讨了学科知识图谱人工标注方法模型, 以此作为对比, 评估自动标注方法的实际效果. 在实验与分析部分, 通过在道德与法治和数学学科的自动标注实验和对其结果的分析, 发现两个学科的知识图谱自动标注均取得了较高的准确率和效率, 与人工标注结果进行了深入比较分析, 得出了一系列有价值的结论, 验证了所提出方法的有效性和准确性. 最后, 对未来的研究方向进行了展望. 总体而言, 研究为学科知识图谱的自动标注提供了一种新的思路和方法, 有望推动相关领域的进一步发展.

关键词: 大语言模型, 知识图谱, 自动标注, 道德与法治, 数学

Abstract:

With the rapid development of artificial intelligence technology, large language models (LLMs) have demonstrated strong abilities in natural language processing and various knowledge applications. This study examined the application of Chinese large language models in the automatic labelling of knowledge graphs for primary and secondary school subjects in particular compulsory education stage morality and law and high school mathematics. In education, the construction of knowledge graphs is crucial for organizing systemic knowledge . However, traditional knowledge graph methods have problems such as low efficiency and labor-cost consumption in data labelling. This study aimed to solve these problems using LLMs, thereby improving the level of automation and intelligence in the construction of knowledge graphs. Based on the status quo of domestic LLMs, this paper discusses their application in the automatic labelling of subject knowledge graphs. Taking morality and rule of law and mathematics as examples, the relevant methods and experimental results are explained. First, the research background and significance are discussed. Second, the development status of the domestic large language model and automatic labelling technology of the subject knowledge graph are then presented. In the methods and model section, an automatic labelling method based on LLMs is explored to improve its application in a subject knowledge graph. This study also explored the subject knowledge graph model to compare and evaluate the actual effect of the automatic labelling method. In the experiment and analysis section, through the automatic labelling experiments and results analysis of the subjects of morality and law and mathematics, the knowledge graphs of the two disciplines are automatically labeled to achieve high accuracy and efficiency. A series of valuable conclusions are obtained, and the effectiveness and accuracy of the proposed methods are verified. Finally, future research directions are discussed. In general, this study provides a new concept and method for the automatic labelling of subject knowledge graphs, which is expected to promote further developments in related fields.

Key words: large language models (LLMs), knowledge graph, automatic labelling, morality and law, mathematics

中图分类号: