1 |
PRINGSHEIM P.. Zwei bemerkungen über den unterschied von lumineszenz-und temperaturstrahlung. Zeitschrift für Physik, 1929, 57, 739- 746.
|
2 |
EPSTEIN R I, BUCHWALD M I, EDWARDS B C, et al.. Observation of laser-induced fluorescent cooling of a solid. Nature, 1995, 377 (6549): 500- 503.
|
3 |
BIGOTTA S, DI LIETO A, TONCELLI A, et al.. Laser cooling of solids: New results with single fluoride crystals. Nuovo Cimento-Societa Italiana Di Fisica Sezione B, 2007, 122 (6/7): 685- 694.
|
4 |
SELETSKIY D V, MELGAARD S D, BIGOTTA S, et al.. Laser cooling of solids to cryogenic temperatures. Nature Photonics, 2010, 4 (3): 161- 164.
|
5 |
MELGAARD S D, ALBRECHT A R, HEHLEN M P, et al.. Solid-state optical refrigeration to sub-100 Kelvin regime. Scientific Reports, 2016(6), 20380.
|
6 |
ZHONG B, YIN J P, JIA Y H, et al.. Laser cooling of Yb3+-doped LuLiF4 crystal. Optics Letters, 2014, 39 (9): 2747- 2750.
|
7 |
VOLPI A, KRÄMER K W, BINER D, et al.. Bridgman growth of laser-cooling-grade LiLuF4:Yb3+ single crystals. Crystal Growth & Design, 2021, 21 (4): 2142- 2153.
|
8 |
ZHONG B, LUO H, SHI Y L, et al.. Laser cooling of 5 mol. % Yb3+:LuLiF4 crystal in air. Optical Engineering, 2016, 56 (1): 011102.
|
9 |
VOLPI A, CITTADINO G, DI LIETO A, et al.. Investigation of Yb-doped LiLuF4 single crystals for optical cooling. Optical Engineering, 2016, 56 (1): 011105.
|
10 |
ZHONG B, LEI Y Q, DUAN X L, et al.. Optical refrigeration of the Yb3+-doped YAG crystal close to the thermoelectric cooling limit. Applied Physics Letters, 2021, 118 (13): 131104.
|
11 |
DE LIMA FILHO E S, NEMOVA G, LORANGER S, et al.. Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure. Optics Express, 2013, 21 (21): 24711- 24720.
|
12 |
THIEDE J, DISTEL J, GREENFIELD S, et al.. Cooling to 208 K by optical refrigeration. Applied Physics Letters, 2005, 86 (15): 154107.
|
13 |
MOBINI E, ROSTAMI S, PEYSOKHAN M, et al.. Laser cooling of ytterbium-doped silica glass. Communications Physics, 2020, 3 (1): 134.
|
14 |
PATTERSON W, BIGOTTA S, SHEIK-BAHAE M, et al.. Anti-Stokes luminescence cooling of Tm3+-doped BaY2F8. Optics Express, 2008, 16 (3): 1704- 1710.
|
15 |
ROSTAMI S, ALBRECHT A R, VOLPI A, et al.. Tm-doped crystals for mid-IR optical cryocoolers and radiation balanced lasers. Optics Letters, 2019, 44 (6): 1419- 1422.
|
16 |
HOYT C, SHEIK-BAHAE M, EPSTEIN R, et al.. Observation of anti-Stokes fluorescence cooling in thulium-doped glass. Physical Review Letters, 2000, 85 (17): 3600- 3603.
|
17 |
FERNANDEZ J, GARCIA-ADEVA A J, BALDA R.. Anti-Stokes laser cooling in bulk erbium-doped materials. Physical Review Letters, 2006, 97 (3): 033001.
|
18 |
CONDON N J, BOWMAN S R, O’CONNOR S P, et al.. Optical cooling in Er3+:KPb2Cl5. Optics Express, 2009, 17 (7): 5466- 5472.
|
19 |
ROSTAMI S, ALBRECHT A R, VOLPI A, et al.. Observation of optical refrigeration in a holmium-doped crystal. Photonics Research, 2019, 7 (4): 445- 451.
|
20 |
GRAGOSSIAN A, GHASEMKHANI M, MENG J W, et al. Optical refrigeration inches toward liquid-nitrogen temperatures [EB/OL]. (2017-07-03)[2024-08-01]. https://spie.org/news/6840-optical-refrigeration-inches-toward-liquid-nitrogen-temperatures.
|
21 |
CITTADINO G, VOLPI A, DI LIETO A, et al.. Co-doping of LiYF4 crystal: A virtuous effect of cooling efficiency. Journal of Physics D, 2018, 51 (14): 145302.
|
22 |
CITTADINO G, DAMIANO E, DI LIETO A, et al.. First demonstration of optical refrigeration efficiency greater than 4% at room temperature. Optics Express, 2020, 28 (10): 14476- 14489.
|
23 |
ZHANG J, LI D H, CHEN R J, et al.. Laser cooling of a semiconductor by 40 Kelvin. Nature, 2013, 493 (7433): 504- 508.
|
24 |
BENDER D A, CEDERBERG J G, WANG C, et al.. Development of high quantum efficiency GaAs/GaInP double heterostructures for laser cooling. Applied Physics Letters, 2013, 102 (25): 252102.
|
25 |
HA S T, SHEN C, ZHANG J, et al.. Laser cooling of organic-inorganic lead halide perovskites. Nature Photonics, 2016, 10 (2): 115- 121.
|
26 |
ZHOU X Z, SMITH B E, RODER P B, et al.. Laser refrigeration of ytterbium‐doped sodium-yttrium-fluoride nanowires. Advanced Materials, 2016, 28 (39): 8658- 8662.
|
27 |
RODER P B, SMITH B E, ZHOU X, et al.. Laser refrigeration of hydrothermal nanocrystals in physiological media. Proceedings of the National Academy of Sciences, 2015, 112 (49): 15024- 15029.
|
28 |
ZHANG J, ZHANG Q, WANG X Z, et al.. Resolved-sideband Raman cooling of an optical phonon in semiconductor materials. Nature Photonics, 2016, 10, 600- 605.
|
29 |
PANT A, XIA X J, DAVIS E J, et al.. Solid-state laser refrigeration of a composite semiconductor Yb:YLiF4 optomechanical resonator. Nature Communications, 2020, 11 (1): 3235.
|
30 |
XIA X J, PANT A, ZHOU X, et al.. Hydrothermal synthesis and solid-state laser refrigeration of ytterbium-doped potassium-lutetium-fluoride (KLF) microcrystals. Chemistry of Materials, 2021, 33 (12): 4417- 4424.
|
31 |
DOBRETSOVA E A, XIA X J, PANT A, et al. Hydrothermal synthesis of Yb3+:LuLiF4 microcrystals and laser refrigeration of Yb3+:LuLiF4/silicon-nitride composite nanostructures [J]. Laser & Photonics Reviews, 2021, 15(10): 2100019.
|
32 |
NEMOVA G.. Laser cooling and trapping of rare-earth-doped particles. Applied Sciences, 2022, 12 (8): 3777.
|
33 |
XIA X J, PANT A, GANAS A S, et al.. Quantum point defects for solid-state laser refrigeration. Advanced Materials, 2020, 33 (23): 1905406.
|
34 |
SELETSKIY D V, EPSTEIN R, SHEIK-BAHAE M.. Laser cooling in solids: Advances and prospects. Reports on Progress in Physics, 2016, 79 (9): 096401.
|
35 |
NEMOVA G, KASHYAP R.. Laser cooling of solids. Reports on Progress in Physics, 2010, 73 (8): 086501.
|
36 |
ZHONG B, LEI Y Q, LUO H, et al.. Laser cooling of the Yb3+-doped LuLiF4 single crystal for optical refrigeration. Journal of Luminescence, 2020, 226, 117472.
|
37 |
SELETSKIY D V, MELGAARD S D, EPSTEIN R I, et al.. Precise determination of minimum achievable temperature for solid-state optical refrigeration. Journal of Luminescence, 2013, 133, 5- 9.
|
38 |
HEHLEN M P, MENG J W, ALBRECHT A R, et al. First demonstration of an all-solid-state optical cryocooler [J]. Light: Science & Applications, 2018, 7(1): 1-10.
|
39 |
HEHLEN M P, VOLPI A, MENG J W, et al. Bridgman growth of fluoride crystals for radiation-balanced lasers (Conference Presentation)[C/OL]// Proceedings Volume 10550, Optical and Electronic Cooling of Solids III. (2019-03-01)[2024-08-01]. https://doi.org/10.1117/12.2284732.
|
40 |
BOWMAN S R.. Lasers without internal heat generation. IEEE Journal of Quantum Electronics, 1999, 35 (1): 115- 122.
|
41 |
BOWMAN S R, O’CONNOR S P, BISWAL S, et al.. Minimizing heat generation in solid-state lasers. IEEE Journal of Quantum Electronics, 2010, 46 (7): 1076- 1085.
|
42 |
BOWMAN S R, O’CONNOR S, BISWAL S, et al. Demonstration and analysis of a high power radiation balanced laser [C]// CLEO: 2011–Laser Science to Photonic Applications. IEEE, 2011.
|
43 |
YANG Z, MENG J, ALBRECHT A R, et al.. Radiation-balanced Yb:YAG disk laser. Optics Express, 2019, 27 (2): 1392- 1400.
|
44 |
BROWN D C, VITALI V A.. Yb:YAG kinetics model including saturation and power conservation. IEEE Journal of Quantum Electronics, 2011, 47 (1): 3- 12.
|
45 |
BENSALAH A, GUYOT Y, BRENIER A, et al.. Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: A comparison with Yb3+:YLiF4. Journal of Alloys and Compounds, 2004, 380 (1/2): 15- 26.
|
46 |
NAKAYAMA Y, HARADA Y, KITA T.. An energy transfer accompanied by phonon absorption in ytterbium-doped yttrium aluminum perovskite for optical refrigeration. Applied Physics Letters, 2020, 117 (4): 041104.
|
47 |
MAT A C S.. Laser crystals with low phonon frequencies. Annales de Chimie - Science des Matériaux, 2003, 28, 5- 20.
|
48 |
WEBER M J, FLEMING J W, DAY G W, et al. Handbook of Optical Materials [M/OL]. Boca Raton, FL, USA: CRC Press, (2018-10-08)[2024-08-01]. https://doi.org/10.1201/9781315219615.
|
49 |
EPSTEIN R, BROWN J, EDWARDS B, et al.. Measurements of optical refrigeration in ytterbium-doped crystals. Journal of Applied Physics, 2001, 90 (9): 4815- 4819.
|
50 |
SHEIK-BAHAE M, EPSTEIN R I.. Optical refrigeration. Nature Photonics, 2007, 1 (12): 693- 699.
|
51 |
SHEIK-BAHAE M, EPSTEIN R I.. Laser cooling of solids. Laser & Photonics Reviews, 2009, 3 (1/2): 67- 84.
|
52 |
HOYT C W, HASSELBECK M P, SHEIK-BAHAE M, et al.. Advances in laser cooling of thulium-doped glass. Journal of the Optical Society of America B, 2003, 20 (5): 1066- 1074.
|
53 |
SELETSKIY D V, HEHLEN M P, EPSTEIN R I, et al.. Cryogenic optical refrigeration. Advances in Optics and Photonics, 2012, 4 (1): 78- 107.
|
54 |
MCCUMBER D.. Einstein relations connecting broadband emission and absorption spectra. Physical Review, 1964, 136 (4A): A954.
|
55 |
CORNACCHIA F, TONCELLI A, TONELLI M.. 2-μm lasers with fluoride crystals: Research and development. Progress in Quantum Electronics, 2009, 33 (2/3/4): 61- 109.
|
56 |
HUBER G, KRÜHLER W, BLUDAU W, et al.. Anisotropy in the laser performance of NdP5O14. Journal of Applied Physics, 1975, 46 (8): 3580- 3584.
|
57 |
MENG J W. The development of all solid-state optical cryo-cooler [D]. Albuquerque, NM, USA: The University of New Mexico, 2020.
|
58 |
MELGAARD S D. Cryogenic optical refrigeration: Laser cooling of solids below 123 K [D]. Albuquerque, NM, USA: The University of New Mexico, 2013.
|
59 |
DUAN X L, ZHONG B, LEI Y Q, et al.. Accurate characterization of the properties of the rare-earth-doped crystal for laser cooling. Applied Sciences, 2022, 12 (9): 4447.
|
60 |
NEMOVA G, KASHYAP R.. Laser cooling in Yb3+:YAG. Journal of the Optical Society of America B, 2014, 31 (2): 340- 348.
|
61 |
HEEG B, DEBARBER P A, RUMBLES G.. Influence of fluorescence reabsorption and trapping on solid-state optical cooling. Applied Optics, 2005, 44 (15): 3117- 3124.
|
62 |
HEHLEN M P, SHEIK-BAHAE M, EPSTEIN R I, et al.. Materials for optical cryocoolers. Journal of Materials Chemistry C, 2013, 1 (45): 7471- 7478.
|
63 |
GRAGOSSIAN A, MENG J, GHASEMKHANI M, et al.. Astigmatic Herriott cell for optical refrigeration. Optical Engineering, 2016, 56 (1): 011110.
|
64 |
SELETSKIY D V, HASSELBECK M P, SHEIK-BAHAE M.. Resonant cavity-enhanced absorption for optical refrigeration. Applied Physics Letters, 2010, 96 (18): 181106.
|