华东师范大学学报(自然科学版) ›› 2004, Vol. 2004 ›› Issue (1): 15-21.

• 数学 统计学 • 上一篇    下一篇

R-L-W方程的精确行波解

聂小兵, 汪礼扔   

  1. 华东师范大学数学系,上海 200062
  • 收稿日期:2002-04-19 修回日期:2002-06-17 出版日期:2004-03-25 发布日期:2004-03-25
  • 通讯作者: 聂小兵

Exact Travelling Wave Solutions for R-L-W Equation

NIE Xiao-bing, WANG Li-reng   

  1. Department of Mathematics, East China Normal University,Shanghai 200062, China
  • Received:2002-04-19 Revised:2002-06-17 Online:2004-03-25 Published:2004-03-25
  • Contact: NIE Xiao-bing

摘要: 受广义tanh-函数法的启发,该文给出了一种求解非线性发展方程精确行波解的新方法:
双函数法。用此方法,得到了R-L-W方程的十六种精确行波解,其中包括孤波解和周期解。推
广了郑赞等人的结果。借助于Mathematica,此方法能部分地在计算机上实现.

关键词: 双函数法, R-L-W方程, 孤波解, 周期解, 双函数法, R-L-W方程, 孤波解, 周期解

Abstract: Stimulated by extended tanh-function method, a double functions method is proposed for constructing exact travelling wave solutions for nonlinear evolution equations. By means of the method, sixteen kinds of exact travelling wave solutions for R-L-W equation are obtained, which contain soliton wave solutions and periodic solutions. The results obtained by Zheng Bin and Zhang Hongqing are extended. With the aid of Mathematica, the method can be carried out partly by computer.

Key words: R-L-W equation, soliton wave solution, periodic solution, double functions method, R-L-W equation, soliton wave solution, periodic solution

中图分类号: