Moment estimation for a class of moving averages driven by Brownian motions
HE Wei-ping1, ZHANG Shi-bin2
1. Department of Mathematics, Inner Mongolia University, Hohhot} 010021, China; 2. Department of Mathematics, Shanghai Maritime University, Shanghai 201306, China
HE Wei-ping, ZHANG Shi-bin. Moment estimation for a class of moving averages driven by Brownian motions[J]. Journal of East China Normal University(Natural Sc, 2014, 2014(4): 18-25.
{1} RAJPUT B S, ROSINSKI J. Spectral representations of infinitely divisible processes [J]. Probability Theory and Related Fields, 1989, 82: 451-487.{2} ZHANG S. On some dependence structures for multidimensional l\'{e}vy driven moving averages [J]. Journal of the Korean Statistical Society, 2012, 41: 555-562.{3} ZHANG S, LIN Z, ZHANG X. A least squares estimator for L\'{e}vy-driven moving averages based on discrete time observations [J]. Communications in Statistics-Theory and Methods, 2013, DOI:10.1080/03610926.2012.763093. (published online){4} BASSE A. Gaussian moving averages and semimartingales [J]. Electronic Journal of Probability, 2008, 13: 1140-1165.{5} BASSE A. Spectral representation of Gaussian semimartingales [J]. Journal of Theoretical Probability, 2009, 22: 811-826.{6} TAQQU M S. Beno\^{i}t Mandelbrot and fractional Brownian motion [J]. Statistical Science, 2013, 28: 131-134.{7} BARNDORFF-NIELSEN O E, CORCUERA J M, PODOLSKIJ M. Multipower variation for Brownian semistationary processes [J]. Bernoulli, 2011, 17: 1159-1194.{8} PRESS W H, TEUKOLSKY S A, VETTERLING W T, et al. Numerical Recipes [M]//Fortran 77, the Art of Scientific Computing. 2nd ed. Cambridge: Cambridge University Press, 1992.{9} IBRAGIMOV I A, LINNIK Y V. Independent and Stationary Sequences of Random Variables [M]. Groningen: Wolters-Noordhoff, 1971.{10} DOUKHAN P. Mixing: Properties and Examples [M]. New York: Springer, 1994.{11} GRADSHTEYN I S, RYZHIK I M. Table of Integrals, Series, and Products [M]. New York: Academic Press, 2007.{12} FRISTEDT B, GRAY L. A Modern Approach to Probability Theory [M]. Boston: Birkh\"{a}user, 1996.{13} POLITIS D N, ROMANO J P. A general resampling scheme for triangular arrays of \alpha-mixing random variables with application to the problem of spectral density estimation [J]. Annals of Statistics, 1992, 20: 1985-2007.{14} 陈希孺. 高等数理统计学~[M]. 合肥: 中国科学技术大学出版社, 1999.{15} WOOD A T A, CHAN G. Simulation of stationary Gaussian processes in [0,1]d [J]. Journal of Computational and Graphical Statistics, 1994, 3: 409-432.{16} DIEKER A B, MANDJES M. On spectral simulation of fractional Brownian motion [J]. Probability in the Engineering and Informational Sciences, 2003, 17: 417-434.