[1] BACHELIER L. Théorie de la spéculation[M]. Paris:Gauthier-Villars, 1900.
[2] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973,81:637-654.
[3] MERTON R C. Optimum consumption and portfolio rules in a continuous-time model[J]. Journal of EconomicTheory, 1971, 3(4):373-413.
[4] TAKSAR M I. Optimal risk and dividend distribution control models for an insurance company[J]. MathematicalMethods of Operations Research, 2000, 51(1):1-42.
[5] GUAN C H, YI F H. A free boundary problem arising from a stochastic optimal control model with boundeddividend rate[J]. Stochastic Analysis and Applications, 2014, 32(5):742-760.
[6] GUAN C H, YI F H. A free boundary problem arising from a stochastic optimal control model under controllablerisk[J]. Journal of Differential Equations, 2016, 260(6):4845-4870.
[7] CHEN X S, CHEN Y S, YI F H. Parabolic variational inequality with parameter and gradient constraints[J].Journal of Mathematical Analysis and Applications, 2012, 385(2):928-946.
[8] CHEN X S, YI F H. A problem of singular stochastic control with optimal stopping in finite horizon[J]. SIAMJournal on Control and Optimization, 2012, 50(4):2151-2172.
[9] CHEN X S, YI F H. Free boundary problem of Barenblatt equation in stochastic control[J]. Discrete andContinuous Dynamical Systems, 2016, 21B(5):1421-1434.
[10] DAI M, YI F H. Finite-horizon optimal investment with transaction costs:A parabolic double obstacle problem[J]. Journal of Differential Equations, 2009, 246(4):1445-1469.
[11] PHAM H. Continuous-Time Stochastic Control and Optimization with Financial Applications[M]. New York:Springer Science & Business Media, 2009.
[12] GILBARG D, TRUDINGER N S. Elliptic Partial Differential Equations of Second Order[M]. New York:Springer, 2015.
[13] LADYZHENSKAIA O A, SOLONNIKOV V A, URAL'TSEVA N N. Linear and Quasi-Linear Equations of Parabolic Type[M]. Providence, RI:American Mathematical Soc, 1988.
[14] OLEINIK O. Second-Order Equations with Nonnegative Characteristic Form[M]. New York:Springer Science & Business Media, 2012.
[15] FRIEDMAN A. Parabolic variational inequalities in one space dimension and smoothness of the free boundary[J]. Journal of Functional Analysis, 1975, 18(2):151-176. |