[1] ROSA A. On certain valuations of the vertices of a graph[C]//Theory of Graphs, International Symposium. 1967, 349-355.
[2] MARUMUTHU G. Super edge magic graceful labeling of generalized Petersen graphs[J]. Discrete Mathematics, 2015, 48:235-241.
[3] 王宏宇, 姚兵, 陈祥恩. 探讨几类具有完全图核心的网络模型的优美性[J]. 数学的实践与认识, 2014, 44(2):210-215.
[4] BONDY J A, MURTY U S R. Graph Theory with Applications[M]. London:The Macmillan Press, 1976.
[5] SEDLÁCEK J. Problem 27[M]//Theory of Graphs and its Applications:Proc Symp Smolenice. Praha:Academia, 1963:163-164.
[6] KOH K M, ROGERS D G, TAN T. On graceful trees[J]. Nanta Math, 1977, 10(2):27-31.
[7] ZHOU X Q, YAO B, CHEN X E, et al. A proof to the even-gracefulness of all lobsters[J]. Ars Combinatoria, 2012, 103:13-18.
[8] YAO B, CHENG H, YAO M, et al. A note on strongly graceful trees[J]. Ars Combinatoria, 2009, 92:155-169.
[9] CHENG H, YAO B, CHEN X E, et al. On graceful generalized spiders and caterpillars[J]. Ars Combinatoria, 2008, 87:181-191.
[10] GALLIAN J A. A dynamic survey of graph labelling[J]. The Electronic Journal of Combinatorics, 2011(18), #DS6. |