华东师范大学学报(自然科学版) ›› 2019, Vol. 2019 ›› Issue (5): 66-73,84.doi: 10.3969/j.issn.1000-5641.2019.05.005

• 数据驱动的计算教育学 • 上一篇    下一篇

基于模糊聚类和支持向量回归的成绩预测

申航杰, 琚生根, 孙界平   

  1. 四川大学计算机学院, 成都 610065
  • 收稿日期:2019-07-28 出版日期:2019-09-25 发布日期:2019-10-11
  • 通讯作者: 孙界平,男,副教授,研究方向为数据科学.E-mail:sunjieping@scu.edu.cn. E-mail:sunjieping@scu.edu.cn
  • 作者简介:申航杰,女,硕士研究生,研究方向为数据科学.E-mail:13693499219@163.com.
  • 基金资助:
    四川省科技厅重点研发项目(2018GZ0182);四川大学未来教育研究专项(SCUFEB2019004)

Performance prediction based on fuzzy clustering and support vector regression

SHEN Hang-jie, JU Sheng-gen, SUN Jie-ping   

  1. College of Computer Science, Sichuan University, Chengdu 610065, China
  • Received:2019-07-28 Online:2019-09-25 Published:2019-10-11

摘要: 现有的成绩预测模型往往过度使用不同类型的属性,导致过于复杂的分数预测方法,或是需要人工参与.为提高学生成绩预测的准确率和可解释性,提出了一种融合模糊聚类和支持向量回归的成绩预测方法.首先引入模糊逻辑来计算隶属度矩阵,根据学生的历史成绩进行聚类,随后对每个聚类簇利用支持向量回归理论对成绩轨迹进行拟合建模.此外,结合学生学习行为等相关属性,对最终的预测结果做调整.在多个基准数据集上进行了实验测试,验证了该方法的有效性.

关键词: 模糊聚类, 支持向量回归, 预测, 教育数据挖掘

Abstract: Existing performance prediction models tend to overuse different types of attributes, leading to either overly complex prediction methods or models that require manual participation. To improve the accuracy and interpretation of student performance prediction, a method based on fuzzy clustering and support vector regression is proposed. Firstly, fuzzy logic is introduced to calculate the membership matrix, and students are clustered according to their past performance. Then, we use Support Vector Regression (SVR) theory to fit and model performance trajectory for each cluster. Lastly, the final prediction results are adjusted in combination with the students' learning behavior and other related attributes. Experimental results on several baseline datasets demonstrate the validity of the proposed approach.

Key words: fuzzy clustering, support vector regression, prediction, educational data mining

中图分类号: