1 |
AGHANIM N, AKRAMI Y, ASHDOWN M, et al. Planck 2018 results(VI): Cosmological parameters [EB/OL]. (2019-09-20)[2020-04-01]. https://arxiv.org/abs/1807.06209.
|
2 |
ADE P A R, AGHANIM N, ARMITAGE-CAPLAN C, et al. Astronomy and Astrophysics, Planck 2013 results(XVI): Cosmological parameters. 2014, 571, A16.
doi: 10.1051/0004-6361/201321591
|
3 |
RIESS A G, CASERTANO S, YUAN W. The Astrophysical Journal, Milky Way Cepheid standards for measuring cosmic distances and application to Gaia DR2: Implications for the Hubble constant. 2018, 861 (2): 126.
doi: 10.3847/1538-4357/aac82e
|
4 |
VIREY J M, TALON-ESMIEU D, EALET A, et al. Journal of Cosmology and Astroparticle Physics, On the determination of curvature and dynamical dark energy. 2008, (12): 008.
doi: 10.1088/1475-7516/2008/12/008
|
5 |
WANG Y, MUKHERJEE P. Physical Review D, Observational constraints on dark energy and cosmic curvature. 2007, 76 (10): 103533.
doi: 10.1103/PhysRevD.76.103533
|
6 |
CLARKSON C, CORTES M, BASSETT B. Journal of Cosmology and Astroparticle Physics, Dynamical dark energy or simply cosmic curvature?. 2007, (8): 11.
doi: 10.1088/1475-7516/2007/08/011
|
7 |
REST A, SCOLNIC D, FOLEY R J, et al. The Astrophysical Journal, Cosmological constraints from measurements of type Ia supernovae discovered during the first 1.5 yr of the Pan-STARRS1 survey. 2014, 795 (1): 44.
doi: 10.1088/0004-637X/795/1/44
|
8 |
KUMAR S. Physical Review D, Consistency of the nonflat ΛCDM model with the new result from BOSS. 2015, 92 (10): 103512.
doi: 10.1103/PhysRevD.92.103512
|
9 |
HUANG Q G, LI M. Journal of Cosmology and Astroparticle Physics, The holographic dark energy in a non-flat universe. 2004, 2004 (8): 13.
doi: 10.1088/1475-7516/2004/08/013
|
10 |
SHEN J, XUE X. Large-scale Lorentz violation gravity and dark energy [EB/OL]. (2018-10-13)[2020-04-01]. https://arxiv.org/abs/1802.03502.
|
11 |
ZHAI H, SHEN J, XUE X. The effective quintessence from string landscape [EB/OL]. (2019-07-01)[2020-04-01]. https://arxiv.org/abs/1906.11860.
|
12 |
LI Q, LI J, ZHOU Y X, et al. The effective potential originating from swampland and the non-trivial Brans-Dicke coupling [EB/OL]. (2020-03-20)[2020-04-01]. https://arxiv.org/abs/2003.09121.
|
13 |
SHANKS T, HOGARTH L, METCALFE N. Monthly Notices of the Royal Astronomical Society: Letters, Gaia Cepheid parallaxes and ‘Local Hole’relieve H0 tension . 2019, 484 (1): L64- L68.
doi: 10.1093/mnrasl/sly239
|
14 |
RIESS A G, CASERTANO S, KENWORTHY D A, et al. Seven problems with the claims related to the Hubble tension in arXiv: 1810.02595 [EB/OL]. (2018-10-08)[2020-04-01]. https://arxiv.org/abs/1810.03526.
|
15 |
VON MARTTENS R, MARRA V, CASARINI L, et al. Physical Review D, Null test for interactions in the dark sector. 2019, 99 (4): 043521.
doi: 10.1103/PhysRevD.99.043521
|
16 |
BENGALY C A P, ANDRADE U, ALCANIZ J S. The European Physical Journal C, How does an incomplete sky coverage affect the Hubble Constant variance?. 2019, 79 (9): 768.
doi: 10.1140/epjc/s10052-019-7284-4
|
17 |
ABBOTT B P, The LIGO Scientific Collaboration, The Virgo Collaboration, et al. Physical Review Letters, GW170817: Observation of gravitational waves from a binary neutron star inspiral. 2017, 119 (16): 161101.
doi: 10.1103/PhysRevLett.119.161101
|
18 |
The LIGO Scientific Collaboration, The Virgo Collaboration, The 1M2H Collaboration, et al. Nature, A gravitational-wave standard siren measurement of the Hubble constant. 2017, 551, 85- 88.
doi: 10.1038/nature24471
|
19 |
FISHBACH M, GRAY R, HERNANDEZ I M, et al. The Astrophysical Journal Letters, A standard siren measurement of the Hubble constant from GW170817 without the electromagnetic counterpart. 2019, 871 (1): L13.
doi: 10.3847/2041-8213/aaf96e
|
20 |
MORTLOCK D J, FEENEY S M, PEIRIS H V, et al. Physical Review D, Unbiased Hubble constant estimation from binary neutron star mergers. 2019, 100 (10): 103523.
doi: 10.1103/PhysRevD.100.103523
|
21 |
FEENEY S M, PEIRIS H V, WILLIAMSON A R, et al. Physical Review Letters, Prospects for resolving the Hubble constant tension with standard sirens. 2019, 122 (6): 061105.
doi: 10.1103/PhysRevLett.122.061105
|
22 |
HOTOKEZAKA K, NAKAR E, GOTTLIEB O, et al. Nature Astronomy, A Hubble constant measurement from superluminal motion of the jet in GW170817. 2019, (3): 940- 944.
doi: 10.1038/s41550-019-0820-1
|
23 |
CHEN H Y, FISHBACH M, HOLZ D E. Nature, A two per cent Hubble constant measurement from standard sirens within five years.. 2018, 562, 545- 547.
doi: 10.1038/s41586-018-0606-0
|
24 |
VITALE S, CHEN H Y. Physical Review Letters, Measuring the Hubble constant with neutron star black hole mergers. 2018, 121 (2): 021303.
doi: 10.1103/PhysRevLett.121.021303
|
25 |
MIAO H T, HUANG Z Q. The Astrophysical Journal, The H0 tension in non-flat QCDM cosmology . 2018, 868 (1): 20.
doi: 10.3847/1538-4357/aae523
|
26 |
BOLEJKO K. Physical Review D, Emerging spatial curvature can resolve the tension between high-redshift CMB and low-redshift distance ladder measurements of the Hubble constant. 2018, 97 (10): 103529.
doi: 10.1103/PhysRevD.97.103529
|