1 |
王忠杰, 文乐, 杨新民. 大数据在智能化电厂中的应用研究与展望. 中国电力, 2019, 52 (3): 133- 139.
|
2 |
李炳森, 胡全贵, 陈小峰, 等. 电网企业数据中台的研究与设计. 电力信息化, 2019, 17 (7): 29- 34.
|
3 |
林鸿, 方学民, 袁葆, 等. 电力物联网多渠道客户服务中台战略研究与设计. 供用电, 2019, 36 (6): 39- 45.
|
4 |
SUNDARARAJAN A, HERNANDEZ A S, SARWAT A I. Adapting big data standards, maturity models to smart grid distributed generation: Critical review. IET Smart Grid, 2020, 3 (4): 508- 519.
doi: 10.1049/iet-stg.2019.0298
|
5 |
PASSERINI F, TONELLO A M. Smart grid monitoring using power line modems: Effect of anomalies on signal propagation. IEEE Access, 2019, (7): 27302- 27312.
|
6 |
刘树仁, 宋亚奇, 朱永利, 等. 基于Hadoop的智能电网状态监测数据存储研究. 计算机科学, 2013, 40 (1): 81- 84.
|
7 |
HUO Y, PRASAD G, ATANACKOVIC L, et al. Cable diagnostics with power line modems for smart grid monitoring. IEEE Access, 2019, (7): 60206- 60220.
|
8 |
WITTEN I H, FRANK E, HALL M A, et al. Data Mining: Practical Machine Learning Tools and Techniques [M]. 4th ed. San Francisco: Morgan Kaufmann, 2016.
|
9 |
COSTA D, PORTELA F, SANTOS M F. An overview of data mining representation techniques [C]// Proceedings of the 2019 7th International Conference on Future Internet of Things and Cloud Workshops. IEEE, 2019: 90-95.
|
10 |
AKOGLU L, TONG H, KOUTRA D. Graph based anomaly detection and description: A survey. Data Mining & Knowledge Discovery, 2015, 29 (3): 626- 688.
|
11 |
CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection for discrete sequences: A survey. IEEE Transactions on Knowledge & Data Engineering, 2012, 24 (5): 823- 839.
|
12 |
TRAN T N, DRAB K, DASZYKOWSKI M. Revised DBSCAN algorithm to cluster data with dense adjacent clusters. Chemometrics & Intelligent Laboratory Systems, 2013, 120, 92- 96.
|
13 |
王文红, 李惊涛, 陈俊彦, 等. 基于聚类算法对异常事件分析评价电能表整体状态的方法: CN201310624924.4 [P]. 2014-03-12.
|
14 |
LIU F T, TING K M, ZHOU Z. Isolation forest [C]// 2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008: 413-422.
|
15 |
余翔, 陈国洪, 李霆, 等. 基于孤立森林算法的用电数据异常检测研究. 信息技术, 2018, 42 (12): 88- 92.
|
16 |
GUHA S, MISHRA N, ROY G, et al. Robust random cut forest based anomaly detection on streams [C]// International Conference on Machine Learning. PMLR, 2016: 2712-2721.
|
17 |
INOUE J, YAMAGATA Y, CHEN Y, et al. Anomaly detection for a water treatment system using unsupervised machine learning [C]// Proceedings of the 2017 IEEE International Conference on Data Mining Workshops. IEEE, 2017: 1058-1065.
|
18 |
BARTOS M, MULLAPUDI A, TROUTMAN S. RRCF: Implementation of the robust random cut forest algorithm for anomaly detection on streams. Journal of Open Source Software, 2019, 4 (35): 1336.
|
19 |
WANG Y, WANG Z, XIE Z, et al. Practical and white-box anomaly detection through unsupervised and active learning [C]// 2020 29th International Conference on Computer Communications and Networks. IEEE, 2020. DOI: 10.1109/ICCCN49398.2020.9209704.
|
20 |
BOX G E P, JENKINS G M, REINSEL G C, et al. Time series analysis: Forecasting and control. Journal of the Operational Research Society, 2015, 22 (2): 199- 201.
|
21 |
HABEEB R A A, NASARUDDIN F, GANI A, et al. Real-time big data processing for anomaly detection: A survey. International Journal of Information Management, 2019, 45, 289- 307.
|