华东师范大学学报(自然科学版) ›› 2021, Vol. 2021 ›› Issue (6): 47-57.doi: 10.3969/j.issn.1000-5641.2021.06.006

• 数学 • 上一篇    下一篇

二阶离散周期边值问题的Ambrosetti-Prodi结果

王瑞(), 路艳琼*(), 杨晓梅()   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2020-07-03 出版日期:2021-11-25 发布日期:2021-11-26
  • 通讯作者: 路艳琼 E-mail:393023294@qq.com;luyq8610@126.com;1269469254@qq.com
  • 基金资助:
    国家自然科学基金青年基金(11901464, 11801453)

Ambrosetti-Prodi results for second-order discrete periodic boundary value problems

Rui WANG(), Yanqiong LU*(), Xiaomei YANG()   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2020-07-03 Online:2021-11-25 Published:2021-11-26
  • Contact: Yanqiong LU E-mail:393023294@qq.com;luyq8610@126.com;1269469254@qq.com

摘要:

本文讨论了二阶离散周期边值问题           $\left\{ \begin{array}{ll} \Delta^{2} u(t-1)+f\Delta u(t)+g(t,u(t)) = s, \;t\in[1,T]_{\mathbb{Z}}, \\ u(0) = u(T-1),\;\Delta u(0) = \Delta u(T-1) \end{array} \right.$ 解的个数与参数 $ s $ 的关系, 其中 $g: [1,T]_{\mathbb{Z}}\times \mathbb{R}\to \mathbb{R}$ 是连续函数, $ f\geqslant 0 $ 是常数, $ T\geqslant2 $ 是一个整数, $ s\in \mathbb{R} $ . 本文运用上下解方法及拓扑度理论获得了存在常数 $ s_{0}\in \mathbb{R} $ , 当 $ s $ $ s_{0} $ 位置关系变化时该问题没有解、至少有一个解、至少有两个解的结果.

关键词: Ambrosetti-Prodi问题, 上下解方法, 拓扑度理论

Abstract:

This paper explores the relationship between the number of solutions and the parameter $ s $ of second-order discrete periodic boundary value problems of the form           $\left\{ \begin{array}{ll} \Delta^{2} u(t-1)+f\Delta u(t)+g(t,u(t)) = s, \;t\in[1,T]_{\mathbb{Z}}, \\ u(0) = u(T-1),\;\Delta u(0) = \Delta u(T-1), \end{array} \right.$ where $g: [1,T]_{\mathbb{Z}}\times \mathbb{R}\to\mathbb{R}$ is a continuous function, $ f\geqslant0 $ is a constant, $ T\geqslant2 $ is an integer, and $ s $ is a real number. By using the upper and lower solution method and the theory of topological degree, we obtain the Ambrosetti-Prodi type alternatives which demonstrate the existence of either zero, one, or two solutions depending on the choice of the parameter $ s $ with fixed constant $ s_{0}\in \mathbb{R} $ .

Key words: Ambrosetti-Prodi problem, upper and lower solution method, topological degree theory

中图分类号: