1 |
FALKOWSKI P, SCHOLES R J, BOYLE E, et al. The global carbon cycle: A test of our knowledge of earth as a system. Science, 2000, 290 (5490): 291- 296.
|
2 |
OBAMA B. The irreversible momentum of clean energy. Science, 2017, 355 (6321): 126- 129.
|
3 |
GAO D F, ARAN-AIS R M, JEON H S, et al. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products . Nature Catalysis, 2019, 2 (3): 198- 210.
|
4 |
HANDOKO A D, WEI F X, JENNDY, et al. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nature Catalysis, 2018, 1 (12): 922- 934.
|
5 |
WAKERLEY D, LAMAISON S, OZANAM F, et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface . Nature Materials, 2019, 18 (11): 1222- 1227.
|
6 |
ZHENG W Z, YANG J, CHEN H Q, et al. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction . Advanced Functional Materials, 2019, 30 (4): 1- 10.
|
7 |
XU C C, ZHI X, VASILEFF A, et al. Highly selective two-electron electrocatalytic CO2 reduction on single-atom Cu catalysts[J]. Small Structures, 2020, 2(1): 1-7.
|
8 |
YANG F Q, MAO X Y, MA M F, et al. Scalable strategy to fabricate single Cu atoms coordinated carbons for efficient electroreduction of CO2 to CO . Carbon, 2020, 168, 528- 535.
|
9 |
CHEN S H, WANG B Q, ZHU J X, et al. Lewis acid site-promoted single-atomic Cu catalyzes electrochemical CO2 methanation . Nano Letters, 2021, 21 (17): 7325- 7331.
|
10 |
JIAO J Q, LIN R, LIU S J, et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry, 2019, 11 (3): 222- 228.
|
11 |
XU H P, REBOLLAR D, HE H Y, et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper . Nature Energy, 2020, 5 (8): 623- 632.
|
12 |
FU S J, LIU X, RAN J R, et al. CO2 reduction by single copper atom supported on g-C3N4 with asymmetrical active sites . Applied Surface Science, 2021, 540, 1- 7.
|
13 |
LI S, GUAN A X, YANG C, et al. Dual-atomic Cu sites for electrocatalytic CO reduction to C2+ products . ACS Materials Letters, 2021, 3 (12): 1729- 1737.
|
14 |
TAKAHASHI I, KOGA O, HOSHI N, et al. Electrochemical reduction of CO2 at copper single crystal Cu(S)-[n(111)×(111)] and Cu(S)-[n(110)×(100)] electrodes . Journal of Electroanalytical Chemistry, 2002, 533 (1/2): 135- 143.
|
15 |
SCHOUTEN K J P, QIN Z S, GALLENT E P, et al. Two pathways for the formation of ethylene in CO2 reduction on single-crystal copper electrodes . Journal of the American Chemical Society, 2012, 134 (24): 9864- 9867.
|
16 |
HAHN C, HATSUKADE T, KIM Y G, et al. Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114 (23): 5918- 5923.
|
17 |
GREGORIO G L, BURDYNY T, LOIUDICE A, et al. Facet-dependent selectivity of Cu catalysts in electrochemical CO2 reduction at commercially viable current densities . ACS Catalysis, 2020, 10 (9): 4854- 4862.
|
18 |
RESKE R, MIRTRY H, BEHAFARID F, et al. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles . Journal of the American Chemical Society, 2014, 136 (19): 6978- 86.
|
19 |
GAO Y G, WU Q, LIANG, X Z, et al. Cu2O nanoparticles with both (100) and (111) facets for enhancing the selectivity and activity of CO2 electroreduction to ethylene . Advanced Science, 2020, 7 (6): 1- 7.
|
20 |
ZHONG D Z, ZHAO Z J, ZHAO Q, et al. Coupling of Cu (100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols. Angewandte Chemie-International Edition, 2021, 60 (9): 4879- 4885.
|
21 |
LI H, YU P P, LEI R B, et al. Facet-selective deposition of ultrathin Al2O3 on copper nanocrystals for highly stable CO2 electroreduction to ethylene . Angewandte Chemie-International Edition, 2021, 60 (47): 24838- 24843.
|
22 |
YANG P P, ZHANG X L, GAO F Y, et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels . Journal of the American Chemical Society, 2020, 142 (13): 6400- 6408.
|
23 |
JUNG H, LEE S Y, LEE C W, et al. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C-C coupling from CO2 reduction reaction . Journal of the American Chemical Society, 2019, 141 (11): 4624- 4633.
|
24 |
GAO Y G, YU S Q, ZHOU P, et al. Promoting electrocatalytic reduction of CO2 to C2H4 production by inhibiting C2H5OH desorption from Cu2O/C composite . Small, 2022, 18 (9): 2105212- 2105222.
|
25 |
LIU W, ZHAI P B, LI A W, et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays . Nature Communications, 2022, 13 (1): 1877- 1889.
|
26 |
ZHANG J F, WANG Y, LI Z Y, et al. Grain boundary-derived Cu(+)/Cu(0) interfaces in CuO nanosheets for low overpotential carbon dioxide electroreduction to ethylene. Advanced Science, 2022, 2200454- 2200465.
|
27 |
ZHOU Y J, QI H H, WU J, et al. Amino modified carbon dots with electron sink effect increase interface charge transfer rate of Cu‐based electrocatalyst to enhance the CO2 conversion selectivity to C2H4. Advanced Functional Materials, 2022, 32 (22): 2113335- 2113347.
|
28 |
ZHANG W, HUANG C Q, XIAO Q, et al. Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction . Journal of the American Chemical Society, 2020, 142 (26): 11417- 11427.
|
29 |
QIU X F, ZHU H L, HUANG J R, et al. Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites . Journal of the American Chemical Society, 2021, 143 (19): 7242- 7246.
|
30 |
LYU Z H, ZHU S Q, XIE M H, et al. Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction . Angewandte Chemie-International Edition, 2021, 60 (4): 1909- 1915.
|
31 |
YU J L, WANG J, MA Y B, et al. Recent progresses in electrochemical carbon dioxide reduction on copper-based catalysts toward multicarbon products. Advanced Functional Materials, 2021, 31 (37): 2102151- 2102179.
|
32 |
XIONG L K, ZHANG X, YUAN H, et al. Breaking the linear scaling relationship by compositional and structural crafting of ternary Cu-Au/Ag nanoframes for electrocatalytic ethylene production. Angewandte Chemie-International Edition, 2021, 60 (5): 2508- 2518.
|
33 |
YAN Y B, ZHAO Z P, ZHAO J, et al. Atomic-thin hexagonal CuCo nanocrystals with d-band tuning for CO2 reduction . Journal of Materials Chemistry A, 2021, 9 (12): 7496- 7502.
|
34 |
ZHONG Y Z, KONG X D, SONG Z M, et al. Adjusting local CO confinement in porous-shell Ag@Cu catalysts for enhancing C-C coupling toward CO2 eletroreduction . Nano Letters, 2022, 22 (6): 2554- 2560.
|
35 |
JIA S Q, ZHU Q G, WU H H, et al. Efficient electrocatalytic reduction of carbon dioxide to ethylene on copper-antimony bimetallic alloy catalyst. Chinese Journal of Catalysis, 2020, 41 (7): 1091- 1098.
|
36 |
SONG H, TAN Y C, KIM B, et al. Tunable product selectivity in electrochemical CO2 reduction on well-mixed Ni-Cu alloys . ACS Applied Materials & Interfaces, 2021, 13 (46): 55272- 55280.
|
37 |
ZHANG Y F, ZHAO Y, WANG C Y, et al. Zn-Doped Cu(100) facet with efficient catalytic ability for the CO2 electroreduction to ethylene . Physical Chemistry Chemical Physics, 2019, 21 (38): 21341- 21348.
|
38 |
YIN Z Y, YU C, ZHAO Z L, et al. Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene . Nano Letters, 2019, 19 (12): 8658- 8663.
|
39 |
SONG Y F, JUNQUEIRA J R C, SIKDAR N, et al. B-Cu-Zn gas diffusion electrodes for CO2 electroreduction to C2+ products at high current densities . Angewandte Chemie-International Edition, 2021, 60 (16): 9135- 9141.
|
40 |
MA W C, XIE S J, LIU T T, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper . Nature Catalysis, 2020, 3 (6): 478- 487.
|