华东师范大学学报(自然科学版) ›› 2023, Vol. 2023 ›› Issue (5): 182-192.doi: 10.3969/j.issn.1000-5641.2023.05.015

• 数据分析 • 上一篇    下一篇

新型电力系统中基于人工免疫和隐马尔可夫的网络安全态势评估

徐植1(), 陈俊1, 张智勇1, 万俊岭2, 袁培森2,*()   

  1. 1. 广西电网有限责任公司计量中心, 南宁 530024
    2. 南京农业大学 人工智能学院, 南京 210095
  • 收稿日期:2023-07-08 接受日期:2023-07-08 出版日期:2023-09-25 发布日期:2023-09-20
  • 通讯作者: 袁培森 E-mail:876722081@qq.com;peiseny@njau.edu.cn
  • 作者简介:徐 植, 男, 硕士, 工程师, 研究方向为计量自动化及数据分析研究. E-mail: 876722081@qq.com
  • 基金资助:
    国家自然科学基金 (61877018); 上海市大数据管理系统工程研究中心开放基金(HYSY21022)

Network security assessment based on hidden Markov and artificial immunization in new power systems

Zhi XU1(), Jun CHEN1, Zhiyong ZHANG1, Junling WAN2, Peisen YUAN2,*()   

  1. 1. Measurement Center of Guangxi Power Grid Co. Ltd., Nanning 530024, China
    2. College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2023-07-08 Accepted:2023-07-08 Online:2023-09-25 Published:2023-09-20
  • Contact: Peisen YUAN E-mail:876722081@qq.com;peiseny@njau.edu.cn

摘要:

高级计量体系是新型电力系统建设的重要组成, 然而高级量测系统依赖于网络信息基础设备, 存在较大的安全问题. 本文基于隐马尔可夫模型并结合人工免疫算法对高级量测系统的网络安全态势进行了评估. 首先, 采用计数器算法来获取电力网络中的安全观测数据; 其次, 通过隐马尔可夫模型描述网络安全状态的变化过程, 并利用人工免疫算法计算不同状态之间的转移概率矩阵; 接着, 利用态势评估误差对状态转移矩阵进行修正; 最后, 通过计算得到不同时刻处于不同安全状态的概率, 再结合风险损失向量最终得到安全态势评估值. 实验表明, 该方法具有较好的评估效果, 能够较为准确地捕获到系统中存在的安全缺陷, 从而保证高级量测系统的安全运行; 准确地发现系统中的相关安全缺陷, 从而保证新型电网环境安全、平稳和可靠地运转.

关键词: 新型电力系统, 高级计量体系, 态势评估, 网络安全, 隐马尔可夫模型, 人工免疫

Abstract:

Advanced metering infrastructure is an important component in the construction of new power systems; however, advanced measurement systems rely on network information infrastructures and present major security issues. This study evaluates the network security posture of advanced metering systems by combining a hidden Markov model with an artificial immunity algorithm. First, a counting algorithm is used to obtain the security observation data in the power network. Subsequently, the Markov model is used to describe the change in the network security state, whereby the artificial immunity algorithm calculates the transfer probability matrix between different states. The state transfer matrix is then modified based on the state assessment error. Upon calculating the probability of being at different security states at different times and combining it with the risk loss vector, the final value of safety posture is obtained. The experiments demonstrate that the method proposed in this study has a good assessment effect and can capture the safety defects in the system more accurately, ensuring the safe operation of the advanced measurement system by accurately identifying the relevant safety defects in the system for a safe, smooth, and reliable operation of the new grid environment.

Key words: new power system, advanced metering infrastructure, situation assessment, network security, hidden Markov model (HMM), artificial immunization

中图分类号: