1 |
ZAHARIA M, CHEN A, DAVIDSON A, et al.. Accelerating the machine learning lifecycle with MLflow. IEEE Data Engineering Bulletin, 2018, 41 (4): 39- 45.
|
2 |
LUO Z, YEUNG S H, ZHANG M, et al. MLCask: Efficient management of component evolution in collaborative data analytics pipelines [C]// 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 2021: 1655-1666.
|
3 |
SCHLEGEL M, SATTLER K U.. Management of machine learning lifecycle artifacts: A survey. ACM SIGMOD Record, 2023, 51 (4): 18- 35.
|
4 |
GHARIBI G, WALUNJ V, RELLA S, et al. Modelkb: Towards automated management of the modeling lifecycle in deep learning [C]// 2019 IEEE/ACM 7th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE). IEEE, 2019: 28-34.
|
5 |
SCULLEY D, HOLT G, GOLOVIN D, et al.. Hidden technical debt in machine learning systems. Advances in Neural Information Processing Systems, 2015, 2, 2503- 2511.
|
6 |
JEREMY H, MIKE D B. Meet Michelangelo: Uber’s Machine Learning Platform [EB/OL]. (2017-09-05)[2023-06-30]. https://www.uber.com/en-TW/blog/michelangelo-machine-learning-platform/.
|
7 |
WILLEM P, MIKE D. Feast: An open source feature store for machine learning [EB/OL]. (2021-01-21)[2023-06-30]. https://feast.dev/blog/what-is-a-feature-store/.
|
8 |
CHEN C, YANG J, LU M, et al.. Optimizing in-memory database engine for AI-powered on-line decision augmentation using persistent memory. Proceedings of the VLDB Endowment, 2021, 14 (5): 799- 812.
|
9 |
ORMENISAN A A, ISMAIL M, HAMMAR K, et al. Horizontally scalable ml pipelines with a feature store [C]// Proceedings of the 2nd SysML Conference. Palo Alto, CA, USA, 2019.
|
10 |
FAGIN R, NIEVERGELT J, PIPPENGER N, et al.. Extendible Hashing—a fast access method for dynamic files. ACM Transactions on Database Systems (TODS), 1979, 4 (3): 315- 344.
|
11 |
NETFLIX. System architectures for personalization and recommendation [EB/OL]. (2013-03-27)[2023-06-30]. https://netflixtechblog.com/system-architectures-for-personalization-and-recommendation-e081aa94b5d8/.
|
12 |
ARVAZ K, ZOHAIB H. Building a gigascale ML feature store with redis, binary serialization, string Hashing, and compression [EB/OL]. (2020-11-19)[2023-06-30]. https://doordash.engineering/2020/11/19/building-a-gigascale-ml-feature-store-with-redis/.
|
13 |
SARAH W. Ralf [EB/OL]. (2022-03-13)[2023-06-30]. https://github.com/feature-store/ralf/.
|
14 |
MOHANTY P, KRISHNASWAMY S, CHOI E. Automated Cache Hierarchy for Feature Stores [R]. CA: University of California, Berkeley, 2021.
|
15 |
ORR L, SANYAL A, LING X, et al. Managing ML pipelines: Feature stores and the coming wave of embedding ecosystems [EB/OL]. (2021-08-11)[2023-06-30]. https://arxiv.org/pdf/2108.05053.pdf.
|