华东师范大学学报(自然科学版) ›› 2024, Vol. 2024 ›› Issue (1): 1-8, 112.doi: 10.3969/j.issn.1000-5641.2024.01.001

• 水环境评价与修复治理 •    下一篇

基于机器学习的卫星遥感水质富营养化评价——以合肥市环城河为例

张勇1,2(), 王慧1,3, 朱传华1, 周浩1, 詹宇1, 李灿1, 肖逸凡1, 杨丽丽1, 刘佳奇1   

  1. 1. 安徽建筑大学 环境与能源工程学院, 合肥 230601
    2. 安徽建筑大学 环境污染控制与废弃物资源化利用安徽省重点实验室, 合肥 230601
    3. 荆州水务集团有限公司, 湖北 荆州 434000
  • 收稿日期:2023-04-26 接受日期:2023-10-20 出版日期:2024-01-25 发布日期:2024-01-23
  • 作者简介:张 勇, 男, 教授, 硕士生导师, 研究方向为水处理技术. E-mail: zhangy@ahjzu.edu.cn
  • 基金资助:
    中国科学院科技服务网络计划 (KFJ-STS-QYZD-173); 安徽省高校自然科学研究项目 (KJ2021A0619)

Evaluation of eutrophication by satellite remote sensing based on machine learning: A case study of Huancheng River in Hefei

Yong ZHANG1,2(), Hui WANG1,3, Chuanhua ZHU1, Hao ZHOU1, Yu ZHAN1, Can LI1, Yifan XIAO1, Lili YANG1, Jiaqi LIU1   

  1. 1. School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
    2. Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230601, China
    3. Jingzhou Water Group Co. Ltd., Jingzhou, Hubei 434000, China
  • Received:2023-04-26 Accepted:2023-10-20 Online:2024-01-25 Published:2024-01-23

摘要:

以合肥市环城河为研究对象, 使用线性回归、随机森林、支持向量回归和套索回归等机器学习模型挖掘Landsat8卫星数据和水质参数之间的关系, 对遥感影像值的反射率和水质参数进行建模, 并比较了4种不同模型的表现. 结果显示, 随机森林模型的表现最好, 对TN、TP、NH3-N反演模型的精度都能达到0.7以上; 反演的水质参数浓度分布图表明TN、TP在环城河东北段的污染最严重, 而NH3-N则在西南段的污染最严重; 从水体富营养化分布图可以看出, 环城河东段水体呈现中度营养状态.

关键词: 机器学习, Landsat8, 富营养化评价

Abstract:

Taking Huancheng River in Hefei City as the study site, machine learning models such as linear regression, random forest, support vector regression, and lasso regression were utilized to establish the relationship between Landsat8 satellite data and water quality parameters, model the reflectance and water quality parameters of remote sensing image values, and compare the performance of four different models. Results showed that the random forest model performed best, and the accuracy of the inversion models for total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH3-N) was above 0.7. The concentration distribution map of water quality parameters showed that the pollution of TN and TP was the most significant in the northeast section of Huancheng River, while NH3-N was most present in the southwest section. The water eutrophication distribution map shows that the water body in the eastern section of the Huancheng River showed a moderate nutrition state.

Key words: machine learning, Landsat8, eutrophication evaluation

中图分类号: