| 1 | ZHOU Y, ZHU Z, BAI X, et al.. Non-stationary texture synthesis by adversarial expansion. ACM Transactions on Graphics, 2018, 37 (4): 49. | 
																													
																						| 2 | GATYS L A, ECKER A S, BETHGE M. Texture synthesis using convolutional neural networks [C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015: 262-270. | 
																													
																						| 3 | LI Y J, FANG C, YANG J M, et al. Universal style transfer via feature transforms [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 385-395. | 
																													
																						| 4 | MARDANI M, LIU G, DUNDAR A, et al.. Neural FFTs for universal texture image synthesis. Advances in Neural Information Processing Systems, 2020, 33, 14081- 14092. | 
																													
																						| 5 | HEITZ E, VANHOEY K, CHAMBON T, et al. A sliced wasserstein loss for neural texture synthesis [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 9412-9420. | 
																													
																						| 6 | ABDERRAZAK A M, HACHOUF F. Texture synthesis using improved transfer learning [C]// 2022 4th International Conference on Pattern Analysis and Intelligent Systems. DOI: 10.1109/PAIS56586.2022.9946881. | 
																													
																						| 7 | LIU G, GOUSSEAU Y, XIA G S. Texture synthesis through convolutional neural networks and spectrum constraints [C]// Proceedings of the 2016 23rd International Conference on Pattern Recognition. 2016: 3234-3239. | 
																													
																						| 8 | LI Y, FANG C, YANG J, et al. Diversified texture synthesis with feed-forward networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 3920-3928. | 
																													
																						| 9 | XIE S S, QIAN W, NIE R, et al.. GAGCN: Generative adversarial graph convolutional network for non-homogeneous texture extension synthesis. IET Image Processing, 2023, 17, 1603- 1614. | 
																													
																						| 10 | GRANOT N, FEINSTEIN B, SHOCHER A, et al. Drop the GAN: In defense of patches nearest neighbors as single image generative models [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 13460-13469. | 
																													
																						| 11 | ELNEKAVE A, WEISS Y. Generating natural images with direct patch distributions matching [C]// Computer Vision–ECCV 2022: 17th European Conference. 2022: 544-560. | 
																													
																						| 12 | WANG Z M, LI M H, XIA G S.. Conditional generative ConvNets for exemplar-based texture synthesis. IEEE Transactions on Image Processing, 2021, 30, 2461- 2475. | 
																													
																						| 13 | HOUDARD A, LECLAIRE A, PAPADAKIS N, et al.. A generative model for texture synthesis based on optimal transport between feature distributions. Journal of Mathematical Imaging and Vision, 2023, 65 (1): 4- 28. | 
																													
																						| 14 | SHOCHER A, BAGON S, ISOLA P, et al. InGAN: Capturing and remapping the “DNA” of a natural image [C]// Proceedings of the IEEE International Conference on Computer Vision. 2019: 4492-4501. | 
																													
																						| 15 | FRÜHSTÜCK A, ALHASHIM I, WONKA P.. TileGAN: Synthesis of large-scale non-homogeneous textures. ACM Transactions on Graphics, 2019, 38 (4): 58. | 
																													
																						| 16 | HOUDARD A, LECLAIRE A, PAPADAKIS N, et al. Wasserstein generative models for patch-based texture synthesis [C]// Scale Space and Variational Methods in Computer Vision: 8th International Conference. 2021: 269-280. | 
																													
																						| 17 | DARZI A, LANG I, TAKLIKAR A, et al.. Co-occurrence based texture synthesis. Computational Visual Media, 2022, (8): 289- 302. | 
																													
																						| 18 | LIN J, SHARMA G, PAPPAS T N.. Toward universal texture synthesis by combining texton broadcasting with noise injection in StyleGAN-2. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 2023, (3): 100092. | 
																													
																						| 19 | SHAHAM T R, DEKEL T, MICHAELI T. SinGAN: Learning a generative model from a single natural image [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 4570-4580. | 
																													
																						| 20 | EFROS A A, LEUNG T K. Texture synthesis by non-parametric sampling [C]// Proceedings of the seventh IEEE International Conference on Computer Vision. 1999: 1033-1038. | 
																													
																						| 21 | EFROS A A, FREEMAN W T. Image quilting for texture synthesis and transfer [C]// Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. 2001: 341-346. | 
																													
																						| 22 | 黄志勇, 何发智, 张胜龙, 等.. 基于随机查找的并行大规模纹理合成. 计算机辅助设计与图形学学报, 2011, 23 (6): 1091- 1098. | 
																													
																						| 23 | 张伟伟, 何凯, 孟春芝.. 自适应选取样本块大小的纹理合成方法. 计算机工程与应用, 2012, 48 (17): 170- 173. | 
																													
																						| 24 | KWATRA V, SCHÖDL A, ESSA I, et al.. Graphcut textures: Image and video synthesis using graph cuts. ACM Transactions on Graphics, 2003, 22 (3): 277- 286. | 
																													
																						| 25 | 孙劲光, 刘双九.. 块尺寸自适应的 Tile 纹理合成算法. 计算机工程与应用, 2016, 52 (11): 164- 168. | 
																													
																						| 26 | KWATRA V, ESSA I, BOBICK A, et al.. Texture optimization for example-based synthesis. ACM Transactions on Graphics, 2005, 24 (3): 795- 802. | 
																													
																						| 27 | ROSENBERGER A, COHEN-OR D, LISCHINSKI D.. Layered shape synthesis: Automatic generation of control maps for non-stationary textures. ACM Transactions on Graphics, 2009, 28 (5): 107. | 
																													
																						| 28 | KASPAR A, NEUBERT B, LISCHINSKI D, et al. Self tuning texture optimization [C]// Computer Graphics Forum. 2015: 349-359. | 
																													
																						| 29 | LEFEBVRE S, HOPPE H.. Appearance-space texture synthesis. ACM Transactions on Graphics, 2006, 25 (3): 541- 548. | 
																													
																						| 30 | HERTZMANN A, JACOBS C E, OLIVER N, et al. Image analogies [C]// Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. 2001: 327-340. | 
																													
																						| 31 | BERGMANN U, JETCHEV N, VOLLGRAF R. Learning texture manifolds with the Periodic Spatial GAN [C]// Proceedings of the 34th International Conference on Machine Learning. 2017: 469-477. | 
																													
																						| 32 | LI C, WAND M. Precomputed real-time texture synthesis with Markovian generative adversarial networks [C]// Computer Vision–ECCV 2016: 14th European Conference. 2016: 702-716. | 
																													
																						| 33 | JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution [C]// Computer Vision–ECCV 2016: 14th European Conference. 2016: 694-711. | 
																													
																						| 34 | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]// Proceedings of the IEEE International Conference on Computer Vision. 2017: 2223-2232. | 
																													
																						| 35 | SUVOROV R, LOGACHEVA E, MASHIKHIN A, et al. Resolution-robust large mask inpainting with Fourier convolutions [C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2022: 2149-2159. | 
																													
																						| 36 | CHI L, JIANG B, MU Y.. Fast Fourier convolution. Advances in Neural Information Processing Systems, 2020, 33, 4479- 4488. |