数字教育资源自动化内容审查是教育信息化时代的迫切需求, 特别是对教育资源是否超标的适用性审查, 存在知识点难定位和难理解的问题. 针对这一需求, 提出了一种基于教育知识图谱和大语言模型(简称“大模型”)协同的教育资源内容审查方法. 具体地, 首先利用“本体”思想, 设计并构建一个面向中小学教育的知识图谱; 之后, 利用大模型在文本生成和排序任务上的优势, 设计基于教学内容生成和排序剪枝的知识定位方法; 最后, 通过教学内容核心知识子图与知识图谱教学路径的冲突检测, 实现超标教学内容识别. 实验结果表明, 所提出的方法可有效应对教育资源内容的超标知识审查任务, 为基于知识图谱及大语言模型协同的教育应用开辟新的技术路径.
从建构主义和能力本位理论出发, 提出了一种基于知识图谱的在线学习系统设计方法, 即打破传统的知识结构, 以提升能力为目标, 构建知识、技能等多维度的能力框架; 搭建了以知识图谱为底层逻辑, 链接数字学习资源的学习系统; 开展了教学实践和实证研究. 首先, 使用调查问卷对学习系统进行了验证; 其次, 以“阅读英文学术论文”能力为学习任务, 随机分配实验组和对照组; 最后, 评估两组对于知识、技能的理解、记忆水平以及综合运用能力. 研究结果显示, 学习系统的有效性和易用性实验组总成绩、知识得分、技能得分和能力得分均高于对照组成绩, 其中总成绩和能力得分具有显著性差异, 表明该系统对于在线学习效果有一定的促进作用.
随着人工智能技术的迅猛发展, 大语言模型 (large language models, LLMs) 在自然语言处理和各种知识应用中展现了强大的能力. 研究了国内大语言模型在中小学学科知识图谱自动标注中的应用, 重点以义务教育阶段道德与法治学科和高中数学学科为例进行分析和探讨. 在教育领域, 知识图谱的构建对于整理和系统化学科知识具有重要意义, 然而传统的知识图谱构建方法在数据标注方面存在效率低、耗费大量人工成本等问题. 研究旨在通过大语言模型来解决这些问题, 从而提升知识图谱构建的自动化和智能化水平. 基于国内大语言模型的现状, 探讨了其在学科知识图谱自动标注中的应用, 以道德与法治和数学学科为例, 阐述了相关方法和实验结果. 首先, 探讨了研究背景和意义. 接着, 综述了国内大语言模型的发展现状和学科知识图谱的自动标注技术. 在方法与模型部分, 尝试探索一种基于国内大语言模型的自动标注方法, 力图完善其在学科知识图谱上的应用. 还探讨了学科知识图谱人工标注方法模型, 以此作为对比, 评估自动标注方法的实际效果. 在实验与分析部分, 通过在道德与法治和数学学科的自动标注实验和对其结果的分析, 发现两个学科的知识图谱自动标注均取得了较高的准确率和效率, 与人工标注结果进行了深入比较分析, 得出了一系列有价值的结论, 验证了所提出方法的有效性和准确性. 最后, 对未来的研究方向进行了展望. 总体而言, 研究为学科知识图谱的自动标注提供了一种新的思路和方法, 有望推动相关领域的进一步发展.
随着机器学习技术的进步, 旨在学习人类修复错误代码模式的自动程序修复技术可以辅助学生修复错误代码, 提高学生的自主学习效率. 在过去, 自动程序修复模型或是基于人工设计的符号规则, 或是基于数据驱动的方法. 随着具有强大自然语言理解能力和代码生成能力的大语言模型的出现, 一些研究尝试使用提示工程进行自动程序修复. 然而, 现有研究主要评估诸如Codex和GPT-4这样的商用模型, 一方面大规模使用的成本较高, 另一方面在教育场景下存在数据隐私隐患. 此外, 这些研究大多使用简单的提示形式来评估模型修复程序的能力, 且缺乏对结果的深入分析. 为弥补上述工作的不足, 通过提示工程评估了两个代表性的开源代码大语言模型, 测试了不同的提示方法, 例如思维链和少样本学习, 并对结果进行了深入分析, 最后提出了一些将大语言模型和编程教育场景结合的建议.
在国家新工科建设背景下, 早期的C++教学已不能满足“两性一度” (高阶性、创新性和挑战度) 的要求, 另外存在知识点碎片化、理论与实践难以结合、单视角偏差等问题, 针对以上问题, 通过将QT (Qt Toolkit)和C++这两门课程合二为一, 提出了有效融合QT和C++的创新教学模式, 并在智慧树平台部署了相应的课程知识图谱辅助教学. 一方面, 扩展了教学的广度, 有效关联课程知识点, 实现多模态教学资源的整合和共享, 促进学生多视角学习知识, 体现课程的创新性和避免单视角偏差; 另一方面, 提高了教学的深度, 构造融合QT和面向对象程序设计C++的知识图谱, 通过这两门课程知识点的有机融合, 搭建从理论到实践的桥梁, 提高课程高阶性和挑战度. 本研究另辟蹊径, 为C++的教学改革开辟了新途径, 也为其他高校的编程课程教学改革提供了有价值的参考和借鉴.