Review Articles

An extended sparse max-linear moving model with application to high-frequency financial data

Timothy Idowu ,

Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA

Zhengjun Zhang

Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA

Pages 92-111 | Received 02 Apr. 2017, Accepted 22 Jun. 2017, Published online: 28 Jul. 2017,
  • Abstract
  • Full Article
  • References
  • Citations

ABSTRACT

There continues to be unfading interest in developing parametric max-stable processes for modelling tail dependencies and clustered extremes in time series data. However, this comes with some difficulties mainly due to the lack of models that fit data directly without transforming the data and the barriers in estimating a significant number of parameters in the existing models. In this work, we study the use of the sparse maxima of moving maxima (M3) process. After introducing random effects and hidden Fréchet type shocks into the process, we get an extended max-linear model. The extended model then enables us to model cases of tail dependence or independence depending on parameter values. We present some unique properties including mirroring the dependence structure in real data, dealing with the undesirable signature patterns found in most parametric max-stable processes, and being directly applicable to real data. A Bayesian inference approach is developed for the proposed model, and it is applied to simulated and real data.

References

  1. Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. San Francisco: Holden-Day[Google Scholar]
  2. Chamú-Morales, F. (2005). Estimation of max-stable processes using Monte Carlo methods with applications to financial risk assessment (PhD dissertation). Department of Statistics at the University of North Carolina, Chapel Hill, NC[Google Scholar]
  3. Davis, R. A., & Resnick, S. I. (1989). Basic properties and prediction of Max-ARMA processes. Advances in Applied Probability, 21(4), 781803[Crossref], [Web of Science ®], [Google Scholar]
  4. Deheuvels, P. (1983). Point processes and multivariate extreme values. Journal of Multivariate Analaysis, 13(2), 257272[Google Scholar]
  5. Fisher, R. A., & Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest and smallest member of a sample. Proceedings of Cambridge Philosophical Society, 24 (2), 180190[Google Scholar]
  6. Gelman, A., Roberts, G. O., & Gilks, W. R. (1996). Efficient metropolis jumping rules. Bayesian Statistics, 5, 599607[Google Scholar]
  7. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2003). Bayesian data analysis, 2e. Boca Raton, FL: CRC Press[Google Scholar]
  8. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721741[Google Scholar]
  9. Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d'une serie aleatoire [On the limiting distribution of the maximum term in a random series]. Annals of Mathematics, 44(3), 423453[Google Scholar]
  10. Hall, P., Peng, L., & Yao, Q. (2002). Moving-maximum models for extrema of time series. Journal of Statistical Planning Inference, 103(1–2), 5163[Google Scholar]
  11. Hansen, L. P. (1982). Large sample properties of generalized method of moments estimator. Econometrica, 50(4), 10291054[Google Scholar]
  12. Hastings, W. K. (1970). Monte carlo sampling methods using Markov chains and their application. Biometrika, 57(1), 97109[Google Scholar]
  13. Heffernan, J. E., Tawn, J. A., & Zhang Z,. (2007). Asymptotically (in)dependent multivariate maxima of moving maxima processes. Extremes, 10(1), 5782[Google Scholar]
  14. Kunihama, T., Omori, Y., & Zhang Z,. (2011). Efficient estimation and particle filter for max-stable processes. Journal of Time Series Analysis, 33(1), 6180[Google Scholar]
  15. Ledford, A. W., & Tawn, J. A. (2003). Diagnostics for dependence within time series extremes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(2), 521543[Google Scholar]
  16. McNeil, A. J., & Frey R,. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series:An extreme value approach. Journal of Empirical Finance, 7(3-4), 271300[Google Scholar]
  17. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller E,. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21, 10871092[Google Scholar]
  18. Pasarica, C., & Gelman, A. (2010). Adaptively scaling the metropolis algorithm using expected squared jumped distance. Statistica Sinica, 20, 343364[Web of Science ®], [Google Scholar]
  19. Robert, C. P., & Casella, G. (2004). Monte carlo statistical methods, 2e. New York, NY: Spinger Text in Statistics. [Google Scholar]
  20. Sibuya, M. (1959). Bivariate extreme statistics. Annals of the Institute of Statistical Mathematics, 11(2), 195210[Google Scholar]
  21. Smith, R. L., & Weissman, I. (1996). Characterization and estimation of the multivariate extremal index. (Tech. Report). Chapel Hill, NC: Department of Statistics at the University of North Carolina[Google Scholar]
  22. Tang, R., Shao, J., & Zhang, Z. (2013). Sparse moving maxima models for tail dependence in multivariate financial time series. Journal of Statistical Planning and Inference, 143(5), 882895[Web of Science ®], [Google Scholar]
  23. Zhang, Z. (2005). A new class of tail-dependent time series models and its applications in financial time series. Advances in Econometrics, 20(B), 323358[Google Scholar]
  24. Zhang, Z., & Huang, J. (2006). Extremal financial risk model and portfolio evaluation. Computational Statistics and Data Analysis, 51(4), 23132338[Google Scholar]
  25. Zhang, Z., & Smith, R. L. (2010). On the estimation and application of max-stable processes. Journal of Statistical Planning and Inference, 140, 11351153[Google Scholar]
  26. Zhang, Z., & Zhu, B. (2016). Copula structured M4 processes with application to high-frequency financial data. Journal of Econometrics, 194, 231241[Google Scholar]