References
- Champion, V., Skinner, C. S., Hui, S., Monahan, P., Juliar, B., Daggy, J., & Menon, U. (2007). The effect of telephone vs. print tailoring for mammography adherence. Patient Education and Counseling, 65(3), 416. [Google Scholar]
- Chen, S., Tian, L., Cai, T., & Yu, M. (in press). A general statistical framework for subgroup identification and comparative treatment scoring. Biometrics. doi:10.1111/biom.12676 [Google Scholar]
- Imai, K., & Ratkovic, M. (2013). Estimating treatment effect heterogeneity in randomized program evaluation. Annals of Applied Statistics, 7, 443–470. [Google Scholar]
- LaLonde, R. (1986). Evaluating the econometric evaluations of training programs with experimental data. American Economic Review, 76, 604–20. [Google Scholar]
- Lu, W., Zhang, H. H., & Zeng, D. (2013). Variable selection for optimal treatment decision. Statistical Methods in Medical Research, 22(5), 493–504. [Google Scholar]
- Murphy, S. A. (2003). Optimal dynamic treatment regimes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(2), 331–355. [Google Scholar]
- Qian, M., & Murphy, S. A. (2011). Performance guarantees for individualized treatment rules. Annals of statistics, 39(2), 1180. [Google Scholar]
- Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium in Biostatistics (pp. 189–326). New York, NY: Springer. [Google Scholar]
- Schulte, P. J., Tsiatis, A. A., Laber, E. B., & Davidian, M. (2014). Q- and A-learning methods for estimating optimal dynamic treatment regimes. Statistical Science, 29(4), 640–661. [Google Scholar]
- Taylor, J. M. G., Cheng, W., & Foster, J. C. (2015). Reader reaction to a robust method for estimating optimal treatment regimes by Zhang et al. (2012). Biometrics, 71(1), 267–273. [Google Scholar]
- Xu, Y., Yu, M., Zhao, Y.-Q., Li, Q., Wang, S., & Shao, J. (2015). Regularized outcome weighted subgroup identification for differential treatment effects. Biometrics, 71, 645–53. [Google Scholar]
- Zhang, B., Tsiatis, A. A., Davidian, M., Zhang, M., & Laber E,. (2012). Estimating optimal treatment regimes from a classification perspective. Statistics, 1(1), 103–114. [Crossref], [Google Scholar]
- Zhao, Y., Zeng, D., Rush, A. J., & Kosorok, M. R. (2012). Estimating individualized treatment rules using outcome weighted learning. Journal of the American Statistical Association, 107(499), 1106–1118. [Taylor & Francis Online], [Google Scholar]
- Zhou, X., Mayer-Hamblett, N., Khan, U., & Kosorok, M. R. (2016). Residual weighted learning for estimating individualized treatment rules. Journal of the American Statistical Association, 39(2), 1180–1210. [Google Scholar]