Review Articles

Treatment recommendation and parameter estimation under single-index contrast function

Cui Xiong ,

School of Statistics, East China Normal University, Shanghai, China

Menggang Yu ,

Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA

Jun Shao

School of Statistics, East China Normal University, Shanghai, China; Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA

shao@stat.wisc.edu

Pages 171-181 | Received 12 Mar. 2017, Accepted 12 May. 2017, Published online: 09 Sep. 2017,
  • Abstract
  • Full Article
  • References
  • Citations

ABSTRACT

In this article, we consider a semiparametric model for contrast function which is defined as the conditional expected outcome difference under comparative treatments. The contrast function can be used to recommend treatment for better average outcomes. Existing approaches model the contrast function either parametrically or nonparametrically. We believe our approach improves interpretability over the non-parametric approach while enhancing robustness over the parametric approach. Without explicit estimation of the nonparametric part of our model, we show that a kernel-based method can identify the parametric part up to a multiplying constant. Such identification suffices for treatment recommendation. Our method is also extended to high-dimensional settings. We study the asymptotics of the resulting estimation procedure in both low- and high-dimensional cases. We also evaluate our method in simulation studies and real data analyses.

References

  1. Champion, V., Skinner, C. S., Hui, S., Monahan, P., Juliar, B., Daggy, J., & Menon, U. (2007). The effect of telephone vs. print tailoring for mammography adherence. Patient Education and Counseling, 65(3), 416[Google Scholar]
  2. Chen, S., Tian, L., Cai, T., & Yu, M. (in press). A general statistical framework for subgroup identification and comparative treatment scoring. Biometrics. doi:10.1111/biom.12676 [Google Scholar]
  3. Imai, K., & Ratkovic, M. (2013). Estimating treatment effect heterogeneity in randomized program evaluation. Annals of Applied Statistics, 7, 443470[Google Scholar]
  4. LaLonde, R. (1986). Evaluating the econometric evaluations of training programs with experimental data. American Economic Review, 76, 60420[Google Scholar]
  5. Lu, W., Zhang, H. H., & Zeng, D. (2013). Variable selection for optimal treatment decision. Statistical Methods in Medical Research, 22(5), 493504[Google Scholar]
  6. Murphy, S. A. (2003). Optimal dynamic treatment regimes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(2), 331355[Google Scholar]
  7. Qian, M., & Murphy, S. A. (2011). Performance guarantees for individualized treatment rules. Annals of statistics, 39(2), 1180[Google Scholar]
  8. Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium in Biostatistics (pp. 189326). New York, NY: Springer[Google Scholar]
  9. Schulte, P. J., Tsiatis, A. A., Laber, E. B., & Davidian, M. (2014). Q- and A-learning methods for estimating optimal dynamic treatment regimes. Statistical Science, 29(4), 640661[Google Scholar]
  10. Taylor, J. M. G., Cheng, W., & Foster, J. C. (2015). Reader reaction to a robust method for estimating optimal treatment regimes by Zhang et al. (2012). Biometrics, 71(1), 267273[Google Scholar]
  11. Xu, Y., Yu, M., Zhao, Y.-Q., Li, Q., Wang, S., & Shao, J. (2015). Regularized outcome weighted subgroup identification for differential treatment effects. Biometrics, 71, 64553[Google Scholar]
  12. Zhang, B., Tsiatis, A. A., Davidian, M., Zhang, M., & Laber E,. (2012). Estimating optimal treatment regimes from a classification perspective. Statistics, 1(1), 103114[Crossref], [Google Scholar]
  13. Zhao, Y., Zeng, D., Rush, A. J., & Kosorok, M. R. (2012). Estimating individualized treatment rules using outcome weighted learning. Journal of the American Statistical Association, 107(499), 11061118[Taylor & Francis Online], [Google Scholar]
  14. Zhou, X., Mayer-Hamblett, N., Khan, U., & Kosorok, M. R. (2016). Residual weighted learning for estimating individualized treatment rules. Journal of the American Statistical Association, 39(2), 11801210[Google Scholar]