References
- Anderson, T. (1963). Asymptotic theory for principal component analysis. The Annals of Mathematical Statistics, 34(1), 122–148. [Google Scholar]
- Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica, 71(1), 135–171. [Google Scholar]
- Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1), 191–221. [Google Scholar]
- Baik, J., & Silverstein, J. (2006). Eigenvalues of large sample covariance matrices of spiked population models. Journal of Multivariate Analysis, 97(6), 1382–1408. [Google Scholar]
- Bickel, P., & Levina, E. (2008). Regularized estimation of large covariance matrices. The Annals of Statistics, 36(1), 199–227. [Google Scholar]
- Cai, T., & Liu, W. (2011). Adaptive thresholding for sparse covariance matrix estimation. Journal of the American Statistical Association, 106(494), 672–684. [Taylor & Francis Online], [Google Scholar]
- Carvalho, C., Chang, J., Lucas, J., Nevins, J., Wang, Q., & West, M. (2008). High-dimensional sparse factor modeling: Applications in gene expression genomics. Journal of the American Statistical Association, 103(484), 1438–1456. [Taylor & Francis Online], [Google Scholar]
- Fan, J., Fan, Y., & Lv, J. (2008). High dimensional covariance matrix estimation using a factor model. Journal of Econometrics, 147(1), 186–197. [Google Scholar]
- Fan, J., Liao, Y., & Liu, H. (2016). An overview of the estimation of large covariance and precision matrices. The Econometrics Journal, 19(1), C1–C32. [Web of Science ®], [Google Scholar]
- Fan, J., Lv, J., & Qi, L. (2011). Sparse high-dimensional models in economics. Annual Review of Economics, 3, 291–317. [Google Scholar]
- Ghosh, J., & Dunson, D. B. (2009). Bayesian model selection in factor analytic models. In D. Dunson (Ed.), Random effect and latent variable model selection (pp. 151–163). Hoboken, NJ: Wiley. [Google Scholar]
- Guttman, L. (1954). Some necessary conditions for common-factor analysis. Psychometrika, 19(2), 149–161. [Google Scholar]
- Hayton, J., Allen, D., & Scarpello, V. (2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7(2), 191–205. [Google Scholar]
- Horn, J. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185. [Google Scholar]
- Huang, J., Liu, N., Pourahmadi, M., & Liu, L. (2006). Covariance matrix selection and estimation via penalised normal likelihood. Biometrika, 93(1), 85–98. [Google Scholar]
- Johnson, R., & Wichern, D. (1998). Applied multivariate statistical analysis. Englewood Cliffs, NJ: Prentice Hall. [Google Scholar]
- Johnstone, I. (2001). On the distribution of the largest eigenvalue in principal components analysis. The Annals of Statistics, 29, 295–327. [Google Scholar]
- Kaiser, H. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141–151. [Google Scholar]
- Kim, H., Fay, M., Feuer, E., & Midthune, D. (2000). Permutation tests for joinpoint regression with applications to cancer rates. Statistics in Medicine, 19(3), 335–351. [Google Scholar]
- Lan, G., & DeMets, D. (1983). Discrete sequential boundaries for clinical trials. Biometrika, 70(3), 659–663. [Google Scholar]
- Leek, J. (2011). Asymptotic conditional singular value decomposition for high-dimensional genomic data. Biometrics, 67(2), 344–352. [Google Scholar]
- Onatski, A. (2009). Testing hypotheses about the number of factors in large factor models. Econometrica, 77(5), 1447–1479. [Crossref], [Web of Science ®], [Google Scholar]
- Patterson, N., Price, A., & Reich, D. (2006). Population structure and eigenanalysis. PLoS Genetics, 2(12), 2074–2093. [Google Scholar]
- Rothman, A., Levina, E., & Zhu, J. (2009). Generalized thresholding of large covariance matrices. Journal of the American Statistical Association, 104(485), 177–186. [Taylor & Francis Online], [Google Scholar]
- Shen, H., & Huang, J. (2008). Sparse principal component analysis via regularized low rank matrix approximation. Journal of Multivariate Analysis, 99(6), 1015–1034. [Google Scholar]
- Shimizu, H., Arimura, Y., Onodera, K., Takahashi, H., Okahara, S., Kodaira, J., … Hosokawa, M. (2016). Malignant potential of gastrointestinal cancers assessed by structural equation modeling. PloS One, 11(2), e0149327. [Google Scholar]
- Tracy, C., & Widom, H. (2000). The distribution of the largest eigenvalue in the Gaussian ensembles. Calogero-Moser-Sutherland Models, 4, 461–472. [Google Scholar]
- West, M. (2003). Bayesian factor regression models in the large p, small n paradigm. Bayesian Statistics, 7, 723–732. [Google Scholar]
- Wong, F., Carter, C., & Kohn, R. (2003). Efficient estimation of covariance selection models. Biometrika, 90(4), 809–830. [Google Scholar]
- Zhou, Y., Wang, P., Wang, X., Zhu, J., & Song, P. X. K. (2017). Sparse multivariate factor analysis regression models and its applications to integrative genomics analysis. Genetic Epidemiology, 41(1), 70–80. [Google Scholar]
- Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2), 265–286. [Taylor & Francis Online], [Google Scholar]
- Zou, H., Hastie, T., & Tibshirani, R. (2007). On the degrees of freedom of the lasso. The Annals of Statistics, 35(5), 2173–2192. [Google Scholar]
- Zwick, W., & Velicer, W. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99(3), 432–442. [Google Scholar]